1

Sorgenti di luce

Abbiamo visto in “Un Universo di fotoni come la luce può essere descritta in termini di onde elettromagnetiche o fotoni. In questo documento ci occuperemo invece della caratterizzazione delle sorgenti di luce. Se puntiamo un telescopio verso il cielo ci rendiamo subito conto che sono solo due le sorgenti di luce dell’Universo alla portata dei nostri occhi, CCD o reflex digitali: stelle e nebulose (ad esclusioni di quelle oscure). La terza sorgente di luce, le galassie, sono in realtà una elegantissima miscela delle altre due.

Sebbene possano sembrare sorgenti identiche di luce ad occhio nudo, stelle e nebulose sono molto differenti. Le prime presentano uno spettro continuo mentre le seconde uno spettro discreto o di emissione. Questo significa che mentre le stelle emettono onde elettromagnetiche con valori continui di λ, il cui valore più probabile determina il colore della stella, le nebulose emettono solo un insieme discreto di lunghezze d’onda.

Se osservata attraverso un reticolo di diffrazione la nebulosa M42 mostra uno spettro discreto (emissione) dove le linee principali sono la Hα (656 nm) e la OIII (501 nm). Le stelle invece hanno uno spettro continuo come mostrato nel visibile in figura.

Tale differenza ha origine nel modo in cui stelle e nebulose generano la luce come descritto dalle tre leggi di Kirchhoff:

  • Un gas o un solido incandescente ad alta pressione produce uno spettro continuo,
  • Un gas incandescente a bassa pressione produce uno spettro di emissione,
  • Uno spettro continuo osservato attraverso un gas a bassa densità e a bassa temperatura produce uno spettro di assorbimento.

In questa sezione di Astrofotografia Digitale trascureremo la terza legge di Kirchhoff che, malgrado sia fondamentale in ambito spettroscopico, non gioca un ruolo essenziale nella comprensione del funzionamento di sensori a semiconduttori quali CMOS e CCD. Per maggiori dettagli riguardo la caratterizzazione di spettri continui, di emissione ed assorbimento rimandiamo alla sezione Spettroscopia Astronomica di ASTROtrezzi.




Un Universo di fotoni

I successi ottenuti dalle teorie ondulatorie della luce, culminate con la formulazione dell’Elettrodinamica Classica, portarono gli scienziati dell’Ottocento a ritenere praticamente chiuso il secolare problema della natura della luce.

La luce che ci arriva dalle stelle è quindi rappresentata da un insieme di onde dette elettromagnetiche che dopo, aver viaggiato nello spazio interstellare vuoto, vengono raccolte dai nostri telescopi. Ciascuna onda elettromagnetica ha una determinata lunghezza d’onda λ e l’insieme di tutte queste onde costituisce quella che noi chiamiamo luce bianca. In particolare l’intervallo di lunghezze d’onda comprese tra 400 e 700 nm costituisce quella parte di luce visibile con i nostri occhi nota appunto come luce visibile. Ovviamente quest’ultima è solo una piccola parte di tutte le lunghezze d’onda che costituiscono la luce, la cui totalità prende il nome di spettro elettromagnetico.

L’arcobaleno è un fenomeno naturale dove la luce proveniente dal Sole viene scomposta in tutte le sue componenti mostrando ai nostri occhi la parte di luce visibile dello spettro elettromagnetico.

Lo spettro elettromagnetico, ovvero la scomposizione della luce bianca nelle sue componenti “colorate”, è ben visibile in un arcobaleno.

Qui sotto riportiamo la classificazione delle onde in funzione della loro λ:

  • Onde radio: > 1’000’000’000 nm
  • Microonde: 1’000’000 – 1’000’000’000 nm
  • Infrarossi: 700 – 1’000’000 nm
  • Luce visibile: 400 – 700 nm
  • Ultravioletto: 100 – 400 nm
  • Raggi X: 0.001 – 100 nm
  • Raggi γ: < 0.001 nm

In questo e nei futuri articoli considereremo solamente la luce visibile ed il vicino infrarosso/ultravioletto, uniche radiazioni in grado di essere rivelate dai sensori CMOS e CCD commerciali.

Alla luce di quanto detto le stelle sono quindi sorgenti di onde elettromagnetiche. La visione ondulatoria della luce venne però messa in dubbio all’inizio del Novecento quando una teoria appena nata, la Meccanica Quantistica, prevedeva che la luce presentasse sia aspetti di natura ondulatoria così come descritti dall’Elettrodinamica Classica, sia aspetti di natura corpuscolare. Come è possibile che la luce si comporti in modi talmente differenti? Questo non è chiaro e prende il nome di dualismo onda corpuscolo: la luce è sia onda che particella (nota come fotone).

La visione quantomeccanica dei “fenomeni luminosi” pare quindi mettere d’accordo tutti ma nello stesso tempo apre una voragine filosofica sulla natura ultima della luce.

Il dualismo onda corpuscolo si riflette ovviamente anche sulla nostra visione dell’Universo che quindi ora è duplice. Le stelle sono pertanto sia delle sorgenti di onde elettromagnetiche che delle generatrici di fotoni.

Quando la luce di una stella raggiunge lo specchio primario del vostro telescopio può pertanto essere riflessa come un’onda del mare che sbatte sul molo oppure, in chiave corpuscolare, i fotoni che la costituiscono possono rimbalzare sulla superficie del vostro specchio come palline da ping pong.

In questo caso entrambe le descrizioni vengono a coincidere. Non sempre è così. Infatti l’interferenza tra due onde elettromagnetiche è descrivibile solo in termini ondulatori, mentre l’effetto fotoelettrico alla basa della rivelazione della luce da parte di sensori CMOS e CCD è descrivibile solo in termini corpuscolari.

Ma se ciascuna onda elettromagnetica può essere caratterizzata da una lunghezza d’onda λ, come possiamo caratterizzare il fotone? La domanda può essere riformulata nel seguente modo: cosa caratterizza una particella in moto? La risposta è la massa e la velocità, ovvero in una parola: l’energia. Ogni fotone può avere un’energia che i fisici esprimono con un’unità di misura detta elettronvolt (eV). Qui sotto riportiamo la classificazione dei fotoni in funzione delle loro energie E:

  • Onde radio: < 0.00000124 eV
  • Microonde: 0.00000124 eV – 0.00124 eV
  • Infrarossi: 0.00124 – 1.7 eV
  • Luce visibile: 1.7 – 3.1 eV
  • Ultravioletto: 3.1 – 12.4 eV
  • Raggi X: 12.4 – 1’240’000 eV
  • Raggi γ: > 1’240’000 eV

Come potete vedere quindi l’Astrofotografia Digitale si occupa della rivelazione di fotoni con energia dell’ordine di qualche eV.

Nell’anno 1900, un fisico tedesco di nome Max Planck, formulò una legge in grado di associare ad un fotone di energia E la corrispettiva lunghezza d’onda λ ovvero un ponte tra il mondo corpuscolare e quello ondulatorio. La legge di Planck è data da:

E = hc/λ

Dove h è una costante nota come costante di Planck e c è la velocità della luce nel vuoto. In unità di misura “comode” per l’astrofotografia digitale il prodotto hc è uguale a circa 1240 eV nm.

Per un astrofilo a questo punto la pioggia non è solo fenomeno di sventura ma, se si tratta di pioggia di fotoni e non d’acqua, può essere un piacere per occhi, CCD e fotocamere digitali.