Cometa 46P/Wirtanen

Finalmente, dopo tre anni di attesa, una cometa particolarmente luminosa attraverserà i cieli invernali. Il suo nome è Wirtanen e venne scoperta nel 1948 dall’astronomo statunitense Carl Wirtanen. A differenza delle ultime comete luminose (PANSTARRS e Lovejoy), la Wirtanen è una cometa periodica ovvero ruota intorno al sole seguendo un’orbita ellittica che la porta ad oscillare tra una distanza minima dal Sole di 1 UA e una massima di 5 UA (dove 1 UA è la distanza media della Terra dal Sole). Il fatto che durante il suo moto orbitale la cometa non sfiora mai la nostra stella, la rende particolarmente poco attiva (e luminosa) e questo spiega il motivo del perché i suoi precedenti passaggi nei pressi del sole (uno ogni 5.4 anni) sono passati inosservati. Il 2018 però è un anno speciale per la Wirtanen. Infatti, seppur poco attiva, la cometa “sfiorerà” il nostro pianeta passando a soli 11 milioni e mezzo di chilometri di distanza. Questo non dovrà farci preoccupare (è sempre 30 volte più lontana della Luna) anzi, sarà la vicinanza della cometa alla Terra a farla apparire luminosa in cielo. Purtroppo, avvicinandosi così poco al Sole, la Wirtanen non svilupperà una coda imponente e si presenterà invece come un batuffolo luminoso (la chioma). La sua luminosità prevista la renderà visibile ad occhio nudo e, il 16 Dicembre 2018, si presenterà al mondo come la cometa più luminosa degli ultimi 20 anni. La Wirtanen doveva essere l’obiettivo della missione Rosetta dell’ESA che però, seguito ritardi, fu costretta a modificare soggetto optando per la Churyumov-Gerasimenko.

La cometa 46P/Wirtanen varcherà i cieli dell’emisfero settentrionale a partire dal mese di novembre. Inizialmente sarà bassa sull’orizzonte sud ma, data la sua vicinanza, si dirigerà velocemente verso nord aumentando giorno dopo giorno la sua luminosità. Il massimo verrà raggiunto il giorno 16 Dicembre 2018 dove la magnitudine si aggirerà intorno alla +3 (visibile ad occhio nudo). ASTROtrezzi cercherà di seguire la cometa a partire dalla fine di Novembre. Seguite questa pagina per avere informazioni sulla cometa e avere gli ultimi aggiornamenti (indicati come UPDATE).

UPDATE (30/11/2018): riportiamo il grafico della magnitudine misurata in funzione del tempo per la cometa 46P/Wirtanen, come riportato nel COBS database.

Luminosità della cometa 46P/Wirtanen. Dati COBS database.

UPDATE (04/12/2018): riportiamo la curva di luminosità della cometa Wirtanen aggiornata con gli ultimi dati del database COBS. La cometa è stata ripresa con una reflex digitale il 04/12/2018 da Varenna – LC (vedi galleria immagini). Seppur bassa sull’orizzonte sud dove l’inquinamento luminoso è più consistente, la Wirtanen si mostrava discretamente luminosa, tanto da permetterne l’inseguimento automatico (15 secondi di posa su camera di guida Magzero MZ-5m + rifrattore 10 cm f/5). Purtroppo la cometa non presenta una coda, se non una minima appena percepibile nell’immagine integrata. Il moto della cometa permette pose da circa un minuto non inseguite con 448 mm di focale.

Luminosità della cometa 46P/Wirtanen. Dati COBS database.

UPDATE (08/12/2018): purtroppo il meteo inclemente non ha permesso ulteriore riprese dalla cometa 46P/Wirtanen. Di seguito riportiamo la curva di luminosità della cometa aggiornata agli ultimi dati del database COBS. Utilizzando i dati di luminosità dal 10/09/2018 ad oggi ci siamo permessi di effettuare un fit lineare al fine di ricavare la nostra previsione per la variazione di luminosità della cometa. Secondo i nostri calcoli (R2 = 0.93), la massima luminosità che raggiungerà la cometa sarà pari a magnitudine +4.0. Secondo le nostre stime quindi, la 46P/Wirtanen non sarà la cometa più luminosa dell’emisfero settentrionale degli ultimi 20 anni, superata dalle comete Holmes, dalla PANSTARRS e Lovejoy.

Luminosità della cometa 46P/Wirtanen. Dati COBS database. La linea tratteggiata rappresenta il fit lineare applicato ai dati sperimentali.

UPDATE (24/12/2018): la cometa di Natale 2018 ha ormai oltrepassato il suo punto di minima distanza dal Sole e dal nostro pianeta e pertanto prosegue inesorabile il suo cammino che la porterà via via ad allontanarsi da noi diminuendo la sua luminosità. Come previsto, la cometa non ha purtroppo mostrato una coda degna di nota mentre la sua luminosità ha raggiunto un valore prossimo a magnitudine +4.0 come stimato anche da noi nell’aggiornamento precedente. Grazie alle condizioni meteo favorevoli siamo riusciti a riprendere la cometa i giorni 12, 15 e 18 dicembre. E’ possibile visionare le immagini nella galleria a fondo articolo o dalla pagina principale del sito (oltre che nella sezione Astrofotografia-Comete). Di seguito riportiamo le effemeridi aggiornate della cometa per il periodo 24/12 – 17/01 oltre al grafico di luminosità con i dati del COBS database aggiornati.

Luminosità della cometa 46P/Wirtanen. Dati COBS database. La linea tratteggiata rappresenta il fit lineare applicato ai dati sperimentali.


Secondo gli ultimi dati la cometa è già visibile (oggi, 30/11/2018) al binocolo. A partire dal 03 Dicembre 2018 la cometa diventerà visibile ad occhio nudo ma solo da cieli estremamente bui (quindi non in Italia). I giorni prossimi al 16 Dicembre 2018 infine, la Wirtanen sarà facilmente visibile da cieli sub-urbani. Per individuarla guardate verso sud intorno alla mezzanotte (più o meno nella direzione dove si trova il Sole intorno a mezzogiorno) e fatevi aiutare dalla cartina riportata in questo articolo. La costellazione da cui partire è Orione, facilmente distinguibile dalle tre stelle più luminose che la compongono. A partire da quella cercate di individuare le altre costellazioni. Ovviamente il lavoro di ricerca sarà tanto più arduo quanto il cielo sarà inquinato. Per chi osserva da cieli urbani o sub-urbani consiglio l’utilizzo di un binocolo. Per chi fosse in difficoltà ricordo che ci sono astrofili pronti a darvi una mano sparsi su tutto il territorio italiano. Per quel che riguarda la Brianza e il Lario suggerisco il Gruppo Amici del Cielo e l’Osservatorio Astronomico di Sormano.

Posizione della cometa 46P/Wirtanen - mappa realizzata con Skychart

Le effemeridi della cometa (in-the-sky.org) calcolate per Milano ma generalizzabili praticamente a tutta Italia, sono riportate qui sotto.

Effemeridi della cometa46P/Wirtanen per la località di Milano

Effemeridi della cometa46P/Wirtanen per la località di Milano

Di seguito una breve guida su come fotografare la cometa 46P/Wirtanen e come seguirla con il software Stellarium, il più completo (e gratuito) planetario virtuale multi-piattaforma oggi disponibile. Per individuare la cometa utilizzando il software Stellarium per mobile è necessario scaricare l’ultima versione del software e mantenerlo costantemente aggiornato. Non perdetevi quindi gli aggiornamenti!

SEGUIRE LA COMETA CON STELLARIUM [contributo di Matteo Manzoni]

Con l’avvicinarsi in questi giorni della cometa 46P/Wirtanen, vediamo come aggiungerla in Stellarium per poterla agevolmente localizzare nel cielo invernale. Per prima cosa dobbiamo avviare Stellarium andando poi in “Finestra di configurazione” o premendo il tasto F2. Selezioniamo quindi il tab “plugins”. Nell’elenco che appare selezionare il plugin “editor sistema solare”. Abilitiamo selezionando la voce “carica all’avvio” e poi premendo il tasto configura.

Nella schermata che viene mostrata dovete selezionare il tab “sistema solare” e poi cliccare sul pulsante “Importa elementi orbitali nel formato MPC…”

Verrà ora mostrata la schermata “importa dati” e selezionando il tab “Ricerca online” si dovrà inserire nella barra di ricerca la denominazione “46P/Wirtanen″ e poi premere la lente d’ingrandimento per avviare la ricerca.

Selezionare come da immagine il nuovo oggetto mostrato e poi premere su “aggiungi oggetti”.

Ora basterà chiudere tutte le schermate aperte e premendo il tasto F3 si aprirà la schermata di ricerca in cui basterà inserire il nome della cometa “46P/Wirtanen″ e ci verrà mostrata la posizione esatta della cometa.

FOTOGRAFARE LA COMETA WIRTANEN

Le comete sono tra gli oggetti più affascinanti del cielo. Eppure, possono diventare tra i soggetti più ostici da riprendere sia per principianti che per astrofotografi esperti. Oltre a partecipare al moto apparente di rotazione con le altre stelle fisse, le comete posseggono infatti anche un loro moto proprio rispetto a queste ultime. Ecco quindi che una montatura astronomica motorizzata non è più, da sola, in grado di inseguire le comete. Quindi che fare?

  • RIPRESA DELLA COMETA 46P/WIRTANEN CON CAVALLETTO FOTOGRAFICO: utilizziamo l’applicazione VIRGO sviluppata da ASTROtrezzi sia per smartphone che per PC al fine di calcolare il massimo tempo di esposizione possibile per la latitudine a cui si trova la cometa. Potete usare la mappa presente in questo articolo al fine di scegliere la giusta costellazione a seconda del periodo in cui deciderete di osservare la cometa. Consigliamo di aprire il diaframma dell’obiettivo il più possibile mentre per gli ISO è consigliabile utilizzare valori medi compresi tra 800 – 1600. Purtroppo, la Wirtanen non svilupperà una vistosa cometa e pertanto si consiglia di riprenderla, possibilmente ambientata, con focali comunque superiori ai 70 mm.
  • RIPRESA DELLA COMETA 46P/WIRTANEN CON UNA MONTATURA ASTRONOMICA: purtroppo il problema del moto proprio delle comete rispetto alle stelle fisse, illustrato nel paragrafo precedente, non si può risolvere banalmente con una montatura astronomica seppur motorizzata. Infatti, questa è in grado di seguire il movimento delle stelle e non delle comete. Come fare allora? Esiste solo una possibilità: inseguire la cometa invece delle stelle! Questo può essere fatto solo attraverso una guida (manuale o autoguida), inseguendo il nucleo della cometa invece della tipica stella di guida. Ovviamente, quando andremo a sommare le nostre immagini, dovremmo allinearle rispetto al nucleo della Wirtanen generando inevitabilmente il mosso nelle stelle. Il risultato finale sarà quindi una cometa perfettamente a fuoco e ben esposta con uno star-trail di fondo. Alcuni software come DeepSkyStacker permettono di ottenere sia stelle che cometa puntiformi attraverso sistemi più o meno complessi di combinazione delle immagini. Prossimamente sarà presente su ASTROtrezzi.it e linkato in questa pagina un articolo su come elaborare le comete utilizzando PixInsight.

Appena disponibili, di seguito verranno riportate le immagini e le misure astronomiche della cometa 46P/Wirtanen effettuate da ASTROtrezzi.

ngg_shortcode_0_placeholder




Eclissi totale di Luna 27 Luglio 2018

La Luna rappresenta uno dei corpi celesti più affascinanti e da sempre è fonte di ispirazione per scienziati, artisti e poeti. In particolare, durante il suo moto di rivoluzione intorno al nostro pianeta, la Luna viene illuminata dal Sole secondo diverse angolazioni dando luogo alle così dette fasi lunari. In particolare, quando il Sole illumina completamente la faccia della Luna rivolta verso Terra, questa viene detta Piena.

Per avvenire ciò, l’orbita lunare deve avere un’inclinazione sufficiente per evitare che la Terra si interponga tra Luna e Sole. Questo è garantito da un’inclinazione dell’orbita lunare di circa 5° rispetto all’eclittica.

Malgrado ciò, durante il moto di rivoluzione lunare, il nostro satellite naturale si troverà a passare per ben due volte attraverso l’intersezione tra il piano orbitale lunare e l’eclittica. Questo punto è detto nodo (Figura 1).

Figura 1: sistema Sole - Terra - Luna e posizione dei nodi.

Se la Luna passa dal nodo il giorno di Luna Piena, allora il sistema Sole – Terra – Luna si troverà allineato ed avverrà un’eclissi totale di Luna. Questo si verificherà il 27 luglio 2018. La Luna, inizialmente illuminata direttamente dalla luce solare (piena) verrà via via occultata dall’ombra del nostro pianeta fino a sparire completamente (eclissi, momento della totalità). In verità il disco lunare rimarrà comunque illuminato dalla debole luce che, emessa dal Sole, attraversa la nostra atmosfera assumendo una colorazione rossa.

Per questo motivo la Luna, durante la totalità si tingerà di rosso.

L’eclissi totale del 27 luglio 2018 si osserverà dall’Italia e sarà caratterizzata da sette fasi che avranno luogo negli orari indicati:

  • P1 (19:15) – inizio della Penombra: la Luna Piena viene parzialmente oscurata dalla Terra. Diminuisce la sua luminosità superficiale.
  • U1 (20:24) – inizio dell’Ombra: una regione sempre più grande della superficie lunare viene oscurata dal nostro pianeta.
  • U2 (21:30) – inizio della totalità: la Luna è completamente oscurata dalla Terra ed assume una colorazione rossastra. La fase di totalità ha inizio
  • Totalità (22:22) – il massimo d’eclissi. In questa fase la Luna raggiunge la sua minima luminosità essendo completamente immersa nel cono d’ombra terrestre
  • U3 (23:13) – fine della totalità: la Luna è ancora oscurata dalla Terra malgrado sia prossima ad uscire dalla regione d’ombra
  • U4 (00:19) – fine dell’ombra: la Luna, uscita dalla regione d’ombra viene via via sempre illuminata dalla luce solare.
  • P4 (01:29) – fine della penombra: la Luna illuminata dal Sole aumenta sempre più la sua luminosità superficiale fino a tornare Piena.

Purtroppo, seppur la fase di totalità sia completamente visibile dall’Italia, l’eclissi nel suo complesso non è osservabile dal nostro paese. Infatti, durante l’intera fase P1 e parte della U1 la Luna si troverà sotto l’orizzonte. Se però gli abitanti del nord Italia dovranno accontentarsi di vedere la Luna sorgere durante la fase U1, gli abitanti del centro e del sud potranno vedere anche parte della fase P1. La divisione tra queste due regioni è illustrata in Figura 2.

Figura 2: mappa di visibilità dell'eclissi totale di Luna del 27/07/2018

COME OSSERVARE E FOTOGRAFARE L’ECLISSI TOTALE DI LUNA

Osservare l’eclissi totale di Luna del 27 luglio 2018 è molto semplice.  Basta trovare un luogo in cui è ben visibile l’orizzonte est, ovvero dove sorge il Sole. La Luna sorgerà a sud-est già eclissata e quindi potrebbe essere interessante riprendere l’evento con una fotocamera equipaggiata di un teleobiettivo (< 300 mm) e cavalletto fotografico. Utilizzate un telecomando per scatto remoto e il sollevamento dello specchio nel caso di reflex al fine di ridurre le eventuali vibrazioni. Se invece volete riprendere il disco lunare potete utilizzare un qualunque telescopio la cui lunghezza focale, espressa in mm, deve rispettare la seguente formula:

 

dove l è la dimensione dei pixel della fotocamera utilizzata espressa in micron e H è l’altezza dell’immagine prodotta dalla fotocamera in pixel. Per chi non vuole cimentarsi nei conti, ricordo che con una normale reflex non professionale, la focale ideale per la ripresa di questa eclissi totale di Luna è 1200 mm di focale. Ricordatevi inoltre che durante un’eclissi di Luna l’illuminazione del disco lunare cambia velocemente ed è quindi necessario adattare i tempi di esposizione. Durante la totalità, in particolare, i tempi sono particolarmente lunghi, dell’ordine di qualche secondo ed è quindi consigliabile stazione con precisione i propri telescopi e/o astroinseguitori. Non utilizzate filtri astronomici, non sono necessari.

 CURIOSITA’

L’orbita lunare è piuttosto complessa e la distanza Terra – Luna cambia repentinamente oscillando tra valori massimi e minimi (orbita ellittica). Pertanto, vi sono periodi in cui la Luna è particolarmente vicina (perigeo) e altri in cui è particolarmente lontana (apogeo). L’effetto principale è una variazione delle dimensioni apparenti del disco lunare che variano generalmente tra i 33.2 e i 29.5 minuti d’arco come visibile in figura 3. Nel caso in cui la Luna Piena si trovi in prossimità di un perigeo o l’apogeo con valori estremi, si parla rispettivamente di Superluna e Miniluna. La Luna Piena del 27 luglio 2018 sarà una Miniluna con un diametro di 29.3 minuti d’arco. Keplero dimostrò che in un’orbita ellittica i corpi celesti si muovono più lentamente in prossimità dell’apogeo e più velocemente al perigeo. Come conseguenza la Luna del 27 luglio si muoverà molto lentamente rendendo l’eclissi la più lunga del secolo.

Figura 3: dimensione apparente della Luna Piena durante il perigeo e l'apogeo

ASTROTREZZI

ASTROtrezzi ha organizzato un’escursione in Italia centro-meridionale al fine di riprendere l’eclissi totale di Luna del 27 luglio 2018. L’evento potrà essere seguito in diretta sulla pagina Facebook di ASTROtrezzi (evento dedicato). Di seguito le immagini preliminari dell’eclissi totale di Luna riprese da Montefiore dell’Aso (AP):

 ngg_shortcode_1_placeholder




Filtri Anti-Inquinamento Luminoso

Perché gli astrofotografi sono costretti a macinare centinaia di chilometri per fotografare il cielo notturno? La risposta è semplice ed ha un nome ed un cognome: Inquinamento Luminoso. Ebbene sì, non solo abbiamo inquinato l’acqua che beviamo e l’aria che respiriamo ma ci stiamo privando anche della possibilità di osservare l’ambiente in cui viviamo: l’Universo. Con la parola inquinamento luminoso intendiamo la diffusione della luce artificiale da parte dell’atmosfera terrestre la quale produce un alone luminoso che, a seconda dell’intensità, è in grado di ridurre il numero di oggetti celesti visibili ad occhio nudo (fotografabili).

La luce artificiale è dovuta all’illuminazione pubblica di strade e parchi, dei cartelli pubblicitari, delle palazzine, delle automobili e molto altro ancora. Nella maggior parte dei casi però solo una piccola parte della luce illumina il soggetto mentre gran parte di essa è diretta verso il cielo.

Di conseguenza, l’inquinamento luminoso è maggiore in prossimità di grandi centri cittadini, dove spesso vivono gli astrofotografi. Quindi cosa fare? Una soluzione è quella descritta all’inizio di questo articolo ovvero allontanarsi il più possibile dai centri cittadini scegliendo luoghi secchi (montagne) dove la diffusione è ridotta al minimo. Una seconda soluzione è quella di cercare di schermarsi dall’inquinamento luminoso utilizzando opportuni filtri. Prima di descrivere in dettaglio il funzionamento di questi filtri è però necessario comprendere la natura della sorgente di luce che vogliamo andare a schermare ossia l’illuminazione artificiale.

Questa è prodotta dalle lampade/lampadine le quali possono utilizzare diversi tipi di tecnologie al fine di produrre luce. Andiamo quindi a studiarne in dettaglio le caratteristiche.

Lampade ad incandescenza

Il principio di funzionamento di queste lampade è semplice. La corrente elettrica passando attraverso un filo metallico (tungsteno) lo scalda aumentandone la temperatura. Superata una certa soglia questo produce luce il cui spettro è detto di corpo nero. Seppur “controintuitivo” emettere come un corpo nero significa emettere luce a tutte le frequenze (continuo) con uno spettro caratteristico come mostrato in figura 1.

Figura 1: spettro di emissione di una lampada ad incandescenza (rosso) confrontato con quello delle nebulose e galassie.

Le lampade ad incandescenza sono state proibite nella comunità europea a partire dal primo settembre 2012. Malgrado ciò molti sono ancora gli impianti di illuminazione privata che utilizzano questo tipo di lampade. In particolare le vediamo nelle case, nelle opere d’arte (se così possiamo definirle) e nelle insegne pubblicitarie. In questa categoria rientrano le lampade alogene ovvero lampade ad incandescenza più efficienti grazie all’utilizzo di gas alogeno capace di inibire la fusione del filamento e quindi aumentarne la temperatura e di conseguenza la luminosità. Questi tipi di lampade ad incandescenza sono utilizzate ad esempio per i fari delle automobili. A differenza delle normali lampade ad incandescenza le lampade alogene non sono soggette alla norma che ne vieta la vendita.

Analizzando in dettaglio lo spettro di emissione riportato in figura 1 possiamo osservare come le lampade ad incandescenza creano un disturbo a tutte le frequenze di interesse astrofisico. Inoltre il massimo contributo si ha intorno ai 640-650 nm, ovvero in prossimità della riga H-alfa (656 nm) dell’idrogeno responsabile della colorazione rossa delle nebulose. In questo senso, per astrofotografi e visualisti le lampade ad incandescenza sono il male assoluto. Fortunatamente, come ribadito in precedenza, questo tipo di lampade sono oggi poco diffuse per l’illuminazione pubblica e quindi danno un contributo minimo alla dose di inquinamento luminoso globale.

Lampade a scarica

Il principio fisico di funzionamento delle lampade a scarica è diverso da quello delle lampade ad incandescenza. Qui un gas inerte o del vapore viene ionizzato ad opera di una differenza di potenziale emettendo di conseguenza luce. Il gas presente può essere mantenuto ad alta o bassa pressione a seconda del tipo di lampada considerata. Esistono una varietà di lampade di questo tipo, dal tubo al neon alle lampade al sodio e mercurio a bassa o alta pressione. I primi vengono generalmente utilizzati per l’illuminazione di interni ed insegne pubblicitarie mentre le lampade al sodio (basa ed alta pressione) e mercurio (alta pressione) nell’illuminazione di strade e parchi pubblici.

Le lampade a scarica emettono luce solamente a determinati valori di lunghezza d’onda (discreto) come riportato in figura 2.

Figura 2: spettro di emissione di una lampada ai vapori di mercurio (blu), sodio ad alta pressione (arancione scuro), sodio a bassa pressione (arancione chiaro) confrontato con quello delle nebulose e galassie.

differenza delle lampade ad incandescenza saranno facilmente schermabili utilizzando appositi filtri. Nel caso delle lampade al sodio si può osservare come la massima intensità luminosa si trovi intorno ai 589 nm (doppietto di emissione del sodio) mentre per quelle al mercurio abbiamo più linee caratterizzate dall’avere frequenze inferiori ai 600 nm. Possiamo quindi dire che il contributo alla linea H-alfa in questo caso è praticamente trascurabile.

Lampade a LED

La tecnologia LED, sviluppata per la prima volta nel 1962, è il modo più moderno per produrre luce visibile. In questo caso la luce è prodotta per elettroluminescenza da alcuni materiali semiconduttori quando a questi viene applicata una differenza di potenziale. Grazie alla maggior durata e al minor consumo di energia, la tecnologia LED sta soppiantando di fatto tutte le altre per l’illuminazione sia pubblica che privata.

Le lampade LED possono emettere luce sia bianca che colorata. In questo secondo caso, la luce risulta essere quasi monocromatica con uno spettro piccato ad una frequenza caratteristica che dipende dal tipo di semiconduttore utilizzato. La maggior parte delle lampade LED brillano però di luce bianca. Il processo di produzione può avvenire sfruttando due tecniche differenti:

  • LED RGB: in questo caso la luce bianca è realizzata come sovrapposizione di led rossi, verdi e blu. Lo spettro è pertanto costituito dalle tre “linee” caratteristiche (vedi figura 3). I LED RGB hanno un utilizzo diffuso in architettura per l’illuminazione di locali e ristoranti.
  • LED blu + fosforo: questo è il caso più abituale in cui la luce bianca è ottenuta come luminescenza da parte della luce blu-UV emessa dal semiconduttore su uno strato di fosforo. In questo caso lo spettro presenterà un picco più o meno grande associato all’emissione originale del semiconduttore e un continuo di frequenze nello spettro del visibile (vedi figura 3). Sotto questo aspetto le lampade LED bianche simulano lo spettro elettromagnetico solare o delle vecchie lampade ad incandescenza. Questi tipi di lampade LED sono quelli più diffusi utilizzati per l’illuminazione delle strade.

Figura 3: spettro di emissione di una lampada LED bianca ottenuta come somma di tre LED (rosso, verde, blu) o come LED + fosforo (linea continua nera) confrontato con quello delle nebulose e galassie.

Analizzando in dettaglio lo spettro di emissione riportato in figura 3 possiamo osservare come i LED RGB siano il male assoluto per gli appassionati di nebulosi in quanto l’emissione è praticamente centrata sulla linea H-alfa. Fortunatamente il contributo all’inquinamento luminoso globale di queste lampade è minimo data la loro scarsa diffusione. I LED bianchi (blu + fosforo) sono invece del tutto simili come risposta spettrale a quelli delle lampade ad incandescenza portando quindi con sé tutti i problemi evidenziati in precedenza. Inoltre anche se la luce LED (blu + fosforo) è definita bianca, abbiamo comunque un residuo di luce blu piuttosto intenso.

I Filtri anti-inquinamento luminoso

Abbiamo visto come la tipologia di sorgente di luce artificiale è tanto variegata quanto dannosa in termini astrofotografici. Come possiamo quindi difenderci dall’inquinamento luminoso senza dover macinare chilometri in auto tra buie strade di montagna? L’unica soluzione è l’utilizzo di filtri anti-inquinamento luminoso. Questi sono filtri in vetro capaci di schermare parte della radiazione luminosa incidente.

Un filtro anti-inquinamento luminoso ideale è quello che riesce a bloccare completamente la luce artificiale facendo passare solo quella proveniente dal Cosmo. Ovviamente tale filtro non esiste. Bisogna quindi trovare un compromesso non sempre possibile. Infatti se per le lampade a scarica dove lo spettro di emissione è discreto è possibile fare un certosino lavoro di pulizia, per le lampade ad incandescenza e LED la situazione è davvero complicata ed una sottrazione efficiente è praticamente impossibile.

Per capire meglio la problematica iniziamo con il considerare le tre grandi categorie di filtri anti-inquinamento luminoso oggi diffuse maggiormente sul mercato: filtri UHC, LPR (Light Pollution Reduction) e ad ampio spettro.

Filtri UHC

UHC è una sigla che sta ad indicare Ultra High Contrast ovvero una famiglia di filtri in grado di fornire un maggior contrasto delle immagini astronomiche. Anche se il nome non ricorda direttamente l’inquinamento luminoso, ricordiamo che questo è il responsabile della diminuzione del contrasto tra i deboli oggetti celesti ed il cielo buio. I filtri UHC sono capaci di bloccare tutta la radiazione luminosa incidente con frequenza compresa tra circa le 530 e 630 nm ovvero rimuove dall’immagine gran parte della luce emessa dalle lampade al mercurio e al sodio che, fino a pochi anni fa, erano la sorgente principale di inquinamento luminoso (vedi figura 4).

Figura 4: Le curve di trasmissione dei filtri UHC sovrapposti allo spettro di emissione di lampade al Sodio, Mercurio ed oggetti astrofisici (nebulose e galassie).

 

Con UHC si va spesso ad indicare non solo un determinato filtro anti-inquinamento luminoso ma anche l’intera famiglia di filtri caratterizzati da risposte spettrali simili. In particolare esistono tre diversi filtri UHC:

  • UHC: è il filtro che da il nome alla famiglia. È il più efficiente nel taglio della luce artificiale e fa passare gran parte della radiazione rossa (linea H-alfa).
  • UHC-E: Questo filtro è analogo all’UHC ma è meno efficiente nel taglio della radiazione ad alta frequenza. In particolare questo filtro fa passare parte delle radiazioni provenienti dalle lampade ai vapori di mercurio.
  • UHC-S: Questo filtro è il meno efficiente della famiglia in quanto poco filtrante sia alle alte frequenze che nella regione spettrale di emissione delle lampade al sodio e nelle basse frequenze (luce rossa). In compenso blocca la radiazione del vicino-infrarosso senza però apportare particolari miglioramenti in termini di qualità delle immagini astronomiche.

Tutti questi filtri vengono venduti dalla ditta Astronomik anche se è possibile trovare filtri UHC di altre marche.

Filtri LPR

I filtri UHC l’hanno fatta da padrone negli anni 2000 in quanto gli unici in grado di ridurre in modo sostanziale l’inquinamento luminoso in astrofotografia. In particolare erano adatti sia per riprese da cieli cittadini (UHC) che da cieli mediamente inquinati (UHC-E). Infine, anche da cieli bui l’utilizzo di un filtro UHC-S può migliorare la qualità globale dell’immagine in termini soprattutto di contrasto. Il prezzo da pagare però non è poco. Tagliando lo spettro in modo così netto nelle frequenze 500-600 nm, si modifica la composizione spettrale e quindi il colore delle sorgenti luminose e pertanto le nostre immagini presentano con i filtri UHC forti dominanti verde-acqua e magenta. Questa dominante poteva essere eliminata con tecniche di “cosmetica” come il bilanciamento del bianco e l’utilizzo di filtri di correzioni quali HLVG (Adobe Photoshop). Malgrado gli sforzi però, le immagini riprese con filtri UHC posseggono sempre una dominante residua. Proprio per ovviare ciò, nell’ultimo ventennio sono stati prodotti una serie di filtri dal nome LPR (Light Pollution Reduction) ad opera dell’azienda IDAS. La risposta spettrale alle lampade al sodio e al mercurio di questi filtri è illustrata in figura 5.

Figura 5: Le curve di trasmissione dei filtri LPR-IDAS sovrapposti allo spettro di emissione di lampade al Sodio, Mercurio ed oggetti astrofisici (nebulose e galassie).

 Anche i filtri LPR vivono in famiglia e ne esistono di tre modelli di cui due praticamente identici:

  • IDAS D1 / IDAS P2: è sotto tutti gli effetti un filtro UHC con l’unica differenza che l’IDAS lascia passare parte della radiazione nella regione tra 500 e 600 nm ad esclusione del picco del sodio. In questo modo la “perturbazione” dei colori ad opera del filtro risulta ridotta così come le dominanti residue che, dopo un opportuno bilanciamento del bianco, sono praticamente nulle. Non esistono sostanziali differenze tra i filtri D1 e P2 di cui il primo non è nient’altro che l’evoluzione tecnologica del secondo.
  • IDAS V4: questo è un filtro molto particolare. Praticamente è un filtro UHC molto stretto centrato sulle linee di emissione delle nebulose (idrogeno, ossigeno). L’efficienza nel taglio dell’inquinamento luminoso è pertanto molto elevata.

Filtri CLS e SkyGlow

Terminiamo la nostra carrellata sui filtri anti-inquinamento luminoso analizzando gli ultimi due diffusi sul mercato: CLS (City Light Suppression) e SkyGlow (“alone luminoso” in italiano). La risposta spettrale dei due filtri è riportata in figura 6.

Figura 6: Le curve di trasmissione dei filtri CLS e SkyGlow sovrapposti allo spettro di emissione di lampade al Sodio, Mercurio ed oggetti astrofisici (nebulose e galassie).

Come si vede dall’immagine i filtri CLS e SkyGlow sono nuovamente dei filtri UHC ma capaci di far passare molta più radiazione incidente a scapito ovviamente della loro capacità di ridurre l’inquinamento-luminoso. Proprio per questo l’utilizzo di questi filtri è spesso limitato all’osservazione visuale del cielo o a riprese da cieli poco inquinati.

I filtri anti-inquinamento luminoso all’epoca dei LED

Se dopo decenni di sofferenza a causa dell’inquinamento indotto dalle lampade a mercurio e sodio si era trovata una soluzione grazie ai filtri UHC, LPS, CLS e SkyGlow, il nuovo millennio ha dato i natali ad una nuova tecnologia di illuminazione: le lampade LED. Molto abbiamo detto di queste lampade nei paragrafi precedente ma molto ancora rimane da argomentare sugli effetti di questa lampade in termini di inquinamento luminoso. La prima caratteristica già analizzata è che i LED hanno uno spettro di emissione continuo il che vuol dire che la loro luce disturba tutte le frequenze della radiazione luminosa. Se quindi con un filtro è possibile rimuovere la parte dello spettro elettromagnetico dove una certa lampada emette in modo discreto, nel caso dei LED l’efficacia di un filtro è notevolmente ridotta.

Inoltre abbiamo sempre parlato di spettro delle lampade, dimenticando che parte del contributo dell’inquinamento luminoso totale è dovuto alla diffusione dei raggi luminosi artificiali da parte dell’atmosfera terrestre. La diffusione è tanto maggiore quanto minore è la lunghezza d’onda della radiazione incidente. Una luce calda come quella delle lampade al sodio diffonde molto meno di una luce bianca (LED) la cui componente blu viene diffusa in modo molto efficiente. Inoltre ricordiamo che i LED hanno un picco residuo molto luminoso nel blu. A parità di potenza quindi le lampade LED diffondono maggiormente la loro luce aumentando l’inquinamento luminoso. Dimentichiamoci quindi i vecchi aloni arancioni che circondavano le città per passare a dei cieli azzurri, simili a quelli diurni.

Purtroppo il problema dell’utilizzo di lampade LED non ha un’immediata soluzione. In figura 7-8-9 vediamo la risposta spettrale dei filtri anti-inquinamento luminoso alle lampade LED.

Figura 7: Le curve di trasmissione dei filtri UHC sovrapposti allo spettro di emissione di lampade LED ed oggetti astrofisici (nebulose e galassie).

Figura 8: Le curve di trasmissione dei filtri LPR-IDAS sovrapposti allo spettro di emissione di lampade LED ed oggetti astrofisici (nebulose e galassie).

Figura 9: Le curve di trasmissione dei filtri CLS e SkyGlow sovrapposti allo spettro di emissione di lampade LED ed oggetti astrofisici (nebulose e galassie).

Quale filtro utilizzare

Concludiamo questo articolo cercando di riassumere con una tabella (tabella 1) gli utilizzi dei vari filtri analizzati e la loro efficacia nei confronti delle lampade a scarica e LED. Abbiamo trascurato le lampade ad incandescenza dato il loro basso contributo all’inquinamento luminoso totale.

Tabella 1: caratteristiche principale dei filtri anti-inquinamento luminoso. Per ogni filtro è indicato l’utilizzo ottimale ovvero un impiego limitato alla ripresa di nebulose ad emissione o planetarie o un impiego più generico. Inoltre si riporta la capacità di filtraggio dell’inquinamento luminoso generato da lampade a scarica e LED.

Concludendo, tra i filtri maggiormente presenti sul mercato nell’ottica di un aumento dell’utilizzo di tecnologia LED per l’illuminazione pubblica e privata, i più efficaci in termini di riduzione dell’inquinamento luminoso rimangono gli UHC, UHC-E e LPR-IDAS V4. Efficacia comunque ridotta dall’impossibilità di schermare lo spettro continuo e l’elevata diffusione della luce prodotta dalle lampade LED.




Il Pianeta Giove

Avere delle informazioni dettagliate ed aggiornate sui pianeti del Sistema Solare è, nell’epoca di internet, piuttosto semplice. Basta andare su un motore di ricerca e digitare il nome di un pianeta per trovare decine di migliaia di articoli dettagliati in lingua italiana e/o inglese. ASTROtrezzi vuole però offrirvi qualcosa di diverso, ovvero accompagnarvi nella scoperta del Sistema Solare attraverso l’osservazione e la ripresa astrofotografica del cielo. Pertanto il nostro punto di partenza non saranno numeri ma immagini, osservate attraverso gli oculari o i monitor LCD delle nostre fotocamere e PC. In particolare, partiremo in questo articolo con il pianeta più grande del Sistema Solare: Giove.

A differenza delle stelle che mantengono pressoché invariata la loro posizione relativa in cielo durante l’anno, i pianeti si muovono tra le stelle. Il termine pianeta deriva infatti dal greco antico, dove stava a significare “stella vagabonda”, riflettendo la peculiarità di questi oggetti apparentemente identici a stelle, di vagare tra le “altre” stelle fisse. Quindi, seppur noti fin dall’antichità, i pianeti erano considerate originariamente stelle “particolari” e non mondi simili alla Terra così come li conosciamo oggi. Per motivi prospettici, tutti i pianeti si muovono lungo una regione ben precisa del cielo, attraversando quelle che prendono il nome di costellazioni dello zodiaco. Ecco quindi che lo zodiaco e i pianeti, in quanto “oggetti” peculiari, ricoprirono subito significati in ambiti religiosi e legati alla superstizione (profezie ed oroscopi).

Figura 1: congiunzione Giove - Venere del 30 giugno 2015. Visto da Terra, Giove è (mediamente) il pianeta più luminoso dopo Venere.

Ancora oggi possiamo osservare ad occhio nudo sei dei sette pianeti del Sistema Solare (Terra esclusa) anche se, a dire il vero, Urano è ormai invisibile da gran parte dei cieli della nostra penisola a causa dell’eccessivo inquinamento luminoso. Di tutti i pianeti, Giove è il più luminoso dopo Venere. La differenza di luminosità tra i vari pianeti è ben visibile durante quei fenomeni astronomici noti come congiunzioni planetarie ovvero quando due o più pianeti si trovano prospetticamente vicini in cielo (Figura 1, congiunzione Giove-Venere del 30 giugno 2015).

Una volta individuato ad occhio nudo il pianeta Giove con l’aiuto di una mappa celeste, di uno smartphone o di un esperto come nelle notti dedicate all’osservazione del cielo a Lo Smeraldino, possiamo iniziare a puntarci contro un binocolo o obiettivo con focale intorno ai 300 mm. Quello che vedrete sarà un piccolo dischetto luminoso circondato da un certo numero di stelline allineate (Figura 2). Il primo è il disco del pianeta che a quegli ingrandimenti non mostrerà particolari evidenti. Le stelline molto probabilmente sono le quattro principali lune del pianeta note come satelliti galileiani: Io, Europa, Ganimede e Callisto. A volte potrete vederne più di quattro ed in tal caso vorrà dire che nel campo ci saranno anche delle stelle di fondo. Nel caso in cui invece le stelline fossero meno di quattro allora significa che alcune lune stanno transitando o di fronte o dietro il disco di Giove. Una volta individuati i satelliti galileiani è possibile determinarne il periodo di rivoluzione intorno a Giove come dimostrato nell’articolo “Studio dei satelliti di Giove con un telescopio amatoriale“.

Figura 2: Giove come visibile attraverso un binocolo o un teleobiettivo.

 Vediamo quindi come già con una piccola strumentazione sia possibile effettuare delle interessanti osservazioni, riprese e persino misure astronomiche amatoriali. Oltre ai quattro satelliti principali, esistono anche satelliti minori come Amalthea, la cui osservazione e ripresa risulta però complessa e sarà a breve oggetto di studio presso Lo Smeraldino.

Un’ultima informazione che possiamo ottenere dall’osservazione ad occhio nudo di Giove è il suo periodo di rivoluzione intorno al Sole. Questo può essere determinato misurando dopo quanto tempo il pianeta ci appare in uno stesso punto del cielo. Per il gigante gassoso questo tempo è pari a circa 12 anni. Utilizzando la legge di Keplero che lega la distanza del pianeta dal Sole al suo periodo di rivoluzione T2 : d3 = costante, otteniamo la proporzione:

TTerra2 : dTerra3 = TGiove2 : dGiove3

ovvero misurando la distanza dal Sole in Unità Astronomiche (1 UA è pari alla distanza Terra – Sole) ed il periodo di rivoluzione intorno al Sole in anni abbiamo:

12 : 13 = 122 : dGiove3

da cui dGiove = 5.24 UA. Basandosi unicamente sulle osservazioni ad occhio nudo, siamo così giunti alla conclusione che Giove si trova ad una distanza dal Sole circa 5 volte maggiore rispetto a quella della Terra. Sapendo che la distanza Terra – Sole è pari a 150 milioni di chilometri, scopriamo che Giove dista circa 800 milioni di chilometri dal Sole.

Proseguiamo ora il nostro viaggio aumentando gli ingrandimenti. Per fare ciò bisogna abbandonare gli strumenti più comuni (binocoli e teleobiettivi) per passare ai ben più potenti mezzi forniteci dall’ottica: i telescopi. Già con un piccolo telescopio è possibile osservare alcuni dettagli del disco planetario: le bande atmosferiche (Figura 3).

Figura 3: Le due bande equatoriali di Giove

Giove è infatti coperto da una spessa atmosfera che ci impedisce totalmente la visione della sua superficie rocciosa. Tale atmosfera è molto complessa e tuttora non ancora compresa a fondo dagli esperti del settore. Quello che sappiamo è che sulla superficie del pianeta si dispongono, parallelamente all’equatore, delle regioni chiare (zone) e scure (bande) alternate. In particolare due regioni scure sono più intense e prendono il nome di bande equatoriali. Oggi sappiamo che le bande, sono strati atmosferici meno densi e con una temperatura più elevata rispetto alle zone. In tali regione il gas fluisce verso il centro del pianeta mentre nelle zone il flusso è contrario. Le zone appaiono più chiare probabilmente a causa della presenza di cristalli di ghiaccio di ammoniaca. Le bande sono confinate da particolari venti detti correnti a getto che possono superare i 400 chilometri orari.

Le bande sono strutture pressoché stabili. Talvolta però è possibile osservare dei fenomeni sporadici, noti come disturbi che ne frammentano il decorso, facendo “scomparire” la banda equatoriale sud. Tali disturbi si manifestano ad intervalli irregolari di 3-15 anni e sono associati alla momentanea (settimane o mesi) sovrapposizione di più strati nuvolosi a quote diverse. ASTROtrezzi ha ripreso un evento di disturbo nel 2010 (Figura 4).

Figura 4: un disturbo ripreso il 02 luglio 2010.

Le scoperte che possiamo fare con un piccolo telescopio però non sono finite! Infatti possiamo stimare le dimensioni del pianeta. Per fare ciò basta misurare il diametro del pianeta così come ripreso con la nostra fotocamere o webcam planetaria. Noto il fattore di scala arcsec/pixel (vedi articolo Misurare il cielo) scopriremo che il diametro apparente massimo del pianeta è all’incirca pari a 50 secondi d’arco.

Sfruttando le leggi della trigonometria nell’approssimazione di angoli piccoli abbiamo che il raggio del pianeta è pari alla distanza Terra – Giove moltiplicata per il raggio apparente di Giove espresso in radianti. Per quel che abbiamo detto prima Giove dista dal Sole 5 UA circa e quindi dalla Terra al minimo 4 UA. Inoltre il raggio apparente del pianeta, pari a 25 secondi d’arco corrispondono a 0.00694 gradi ovvero 0.00012113 radianti (potete utilizzare il tasto di conversione deg-rad presente sulle calcolatrici scientifiche). Moltiplicando i due numeri otteniamo un raggio del pianeta pari a 0.000484 UA che in chilometri corrisponde a circa 70 mila. Ricordando che il nostro pianeta ha un raggio pari a circa 6000 km, questo vuol dire che possiamo disporre quasi 12 Terre lungo il diametro equatoriale di Giove.

Infine, talvolta è possibile osservare il proiettarsi dell’ombra dei satelliti galileiani sul disco di Giove. Questo fenomeno rappresenta sotto tutti gli effetti un’eclissi totale di Sole vista dallo spazio.

Figura 5: eclissi di "luna" su Giove vista da Terra.

Proseguiamo il nostro viaggio alla scoperta del Gigante Gassoso andando ad ingrandire ancora di più il disco del pianeta. Questo può essere fatto visualmente utilizzando oculari con focale sempre minore e fotograficamente aggiungendo alla nostra camera lenti moltiplicative note come lenti di Barlow. A questo punto il gioco diventa tanto interessante quanto duro. Infatti il massimo numero di ingrandimenti che potremo utilizzare sarà determinato principalmente dalla turbolenza atmosferica o seeing (per maggiori informazioni si legga l’articolo “La scala Antoniadi”). Pertanto, al fine di sfruttare al meglio il vostro strumento consigliamo di restare in pianura durante le notti con calma atmosferica, generalmente caratterizzata da foschia. Il massimo lo otterrete in un sottoinsieme di queste notti dove la calma atmosferica sarà presente anche sui monti, dove la trasparenza è maggiore e l’inquinamento luminoso ridotto. Anche se talvolta il seeing potrebbe non essere indecente, sconsigliamo comunque l’osservazione planetaria in notti ventose o da balconi e finestre. Una buona indicazione la otterrete osservando lo scintillio delle stelle ad occhio nudo. Se “luccicano” dedicatevi ad altro, mentre se sono “fisse” è il momento di spingere al massimo i vostri strumenti.

In una serata di seeing buono è possibile così scorgere i dettagli delle bande e delle zone ed in particolare i vortici. Queste sono strutture atmosferiche ruotanti in senso concorde o discorde a quello di rotazione del pianeta (si parla come sulla Terra di cicloni ed anticicloni). A differenza della Terra però su Giove gli anticicloni sono dominanti numericamente. I vortici non sono fenomeni perenni ma hanno una vita che varia da diversi giorni a centinaia di anni.  Gli anticicloni sono di colore chiaro e si dispongono longitudinalmente al disco planetario e tendono a fondersi quando vengono a contatto. I cicloni sono invece di dimensioni inferiore e colore bruno. Esistono comunque due particolari tipi di anticicloni peculiari: la grande macchia rossa e l’ovale BA. Questi due sono di colore rosso a seguito del materiale portato in alta atmosfera dalle profondità del pianeta. La prima ha dimensioni paragonabili a quelle di circa due/tre Terre (provate a misurarle con il vostro telescopio utilizzando la tecnica prima descritta per determinare il diametro di Giove), colore variabile dal bianco al rosa pastello al rosso mattone e venne osservata per la prima volta nel 1665 dall’astronomo Giovanni Cassini (Figura 6). L’ovale BA detta anche piccola macchia rossa si è formato nel 2000 ed ha iniziato a tingersi di rosso nel 2005. Le sue dimensioni stanno via via crescendo ed ormai hanno raggiunto la metà di quelle della grande macchia rossa.

La Grande Macchia Rossa ripresa allo Smeraldino il 18/03/2016.

Infine, ingrandendo sufficientemente il disco del pianeta è possibile determinare utilizzando ad esempio la posizione della macchia rossa, il periodo di rotazione di Giove. Questo risulterà essere pari all’incirca a 9 ore e 55 minuti. Con una velocità di rotazione così elevata, il pianeta mostrerà un evidente schiacciamento ai poli, misurabile amatorialmente come dimostrato nell’articolo Misura dell’ellitticità di Giove.

Questo è quanto è possibile osservare/misurare di Giove e su Giove in condizioni standard (medi/piccoli telescopi e seeing accettabile). In condizioni eccezionali è inoltre possibile riprendere alcuni particolari dei satelliti galileiani.

Infine in rari casi è possibile registrare l’impatto di comete e/o asteroidi sul pianeta. Infatti, data la sua notevole massa, Giove attrae gravitazionalmente su di se gli oggetti di passaggio quali appunto asteroidi e comete.

Con questo abbiamo concluso il nostro viaggio alla scoperta di Giove, basato su pixel, secondi d’arco ed osservazioni dirette… insomma, quello che in fondo è l’Astronomia.




Misura della variazione temporale dell’inquinamento luminoso

L’inquinamento luminoso consiste nella diffusione della luce parassita generata dall’illuminazione artificiale da parte dell’atmosfera terrestre. L’effetto complessivo è quello di una riduzione del rapporto segnale/fondo cielo con conseguente perdita di magnitudine apparente visibile da una determinata regione.

All’inquinamento luminoso contribuiscono sia l’illuminazione pubblica che quella privata. Mentre la prima rimane più o meno costante durante l’intera durata della notte, la seconda connessa all’attività umana dovrebbe diminuire nel corso del tempo a seguito per esempio dello spegnimento delle luci domestiche o diminuzione del traffico stradale.

Se si considera una regione limitata di cielo, allora la luminosità media della stessa dovrebbe variare nel corso della notte con un abbassamento progressivo all’aumentare delle ore dopo il tramonto. A tale scopo si è deciso di riprendere per una notte intera (quella a cavallo tra il 22 ed il 23 luglio 2015) una porzione di cielo delle dimensioni di 23° x 16°, prossima allo zenit, utilizzando un obiettivo fisheye da 8 mm su reflex Canon EOS 500D modificata Baader. Le misure sono state effettuate presso l’Osservatorio Astronomico Smeraldino.

Le immagini in formato RAW, sono state analizzate con IRIS, considerando come valore medio di luminosità della foto il minimo valore in ADU presente nella sezione di cielo considerato. Ovviamente si è prestata attenzione a considerare un valore minimo di ADU superiore al nero pari a circa 1020 ADU.

Il grafico della luminosità del cielo in funzione dell’ora locale è rappresentato in figura 1.

Figura 1: variazione della luminosità del cielo espressa in ADU in funzione dell’ora legale. Le linee verdi verticali rappresentano il crepuscolo nautico, mentre quelle rosse il crepuscolo astronomico rispettivamente di Luna (sinistra) e Sole (destra).

Il grafico mostra in modo evidente i due crepuscoli astronomici, il primo a sinistra della Luna al tramonto (ore 1:42) mentre il secondo a destra del Sole all’alba (ore 3:39). Ovviamente a causa della differente magnitudine dei due oggetti il crepuscolo solare è ben più “intenso” di quello lunare.

Poco prima della fine del crepuscolo astronomico lunare, un sistema nuvoloso è passato nei pressi dello zenit intorno alla 01:21 aumentando improvvisamente la luminosità del cielo dato l’elevato albedo delle nuvole (conseguente aumento di riflessione delle luci artificiali verso terra).

Purtroppo la presenza della Luna e il passaggio delle nubi non hanno permesso un lungo monitoraggio dell’inquinamento luminoso, limitato a poche ore nel cuore della notte. Si è notata comunque una piccola variazione pari al (-0.7±0.4)% al limite della rivelazione.  Quello che ci si aspettava era una variazione sostanziale nelle prime ore della notte, tra le 22.30 circa e le 2.00. Purtroppo la presenza di Luna e nuvole hanno impedito questo tipo di misura.

In ogni caso, la misura effettuata ha mostrato la validità del metodo utilizzato. La stessa verrà ripetuta in autunno e/o inverno in condizioni di luna nuova o calante. Inoltre lo stesso metodo potrà essere utilizzato per misure di inquinamento su scala stagionale al fine di identificare i fattori che influenzano la qualità del cielo. A titolo puramente qualitativo riportiamo in figura 2 la somma delle pose effettuate durante la misura.

Figura 2: somma delle immagini utilizzate per lo studio dell’inquinamento luminoso all’Osservatorio Astronomico Smeraldino.




Diversamente Romantici

Ci sono fenomeni naturali la cui spiegazione fisica è cambiata nel corso dei secoli: vuoi per un generale progresso delle teorie scientifiche, vuoi perché oggi abbiamo accesso ad alcune informazioni difficilmente ottenibili in passato. Ma siamo sicuri che le scuole, i mezzi di informazione o libri da cui attingiamo il nostro sapere siano opportunamente aggiornati?

Non stiamo parlando di scoperte dell’ultima decade ma vecchie di centinaia di anni. Direte voi, impossibile. Eppure in questo articolo andremo a smontare alcune convinzioni comuni.

Partiamo dall’oggetto celeste che meglio conosciamo: la Luna. Come tutti sappiamo il nostro satellite naturale nel corso di un mese circa, varia la sua fase. La “fettuccina” di Luna che ogni notte possiamo osservare ad occhio nudo è la parte di superficie lunare illuminata dalla luce diretta del Sole come rappresentato in figura 1. Sino a qui tutto è corretto e le vostre certezze sono solide come pareti d’acciaio.

Figura 1: sistema Terra – Luna – Sole. Le fasi lunari sono frutto dell’illuminazione diretta del disco lunare da parte del Sole.

Aggiungiamo ora una piccola complicazione al nostro ragionamento. Vi è mai capitato di osservare la Luna pochi giorni prima o dopo la Luna Nuova, ovvero quando la falce di Luna è molto sottile e immersa nelle luci di tramonto/alba? In quei casi oltre alla falce di luna è possibile osservare anche il restante disco lunare, illuminato da una luce tenue che prende il nome di luce cinerea descritta per la prima volta da Leonardo da Vinci.

La spiegazione scientifica di questo fenomeno è stata invece attribuita a Galileo Galilei. La luce cinerea non sarebbe altro che la luce del Sole riflessa dalla superficie terrestre in direzione della Luna, come illustrato in figura 2. Anche la spiegazione della luna cinerea è corretta dal punto di vista scientifico. A questo punto mi chiederete: Dove è la novità?

Figura 2: Sistema Terra – Luna – Sole. La luce cinerea non è altro che la riflessione dei raggi solari da parte della superficie terrestre.

Vi pongo ora la seguente domanda a cui sia Leonardo da Vinci che Galileo Galilei diedero una risposta: di che colore è la luce cinerea? Perché?
Per rispondere alla prima domanda basta osservare attentamente la superficie lunare al binocolo o con un piccolo telescopio. Scoprirete che la luce cinerea ha una tonalità bluastra. Perché? La spiegazione che diede Galileo e che i più ritengono corretta è: “essendo il nostro pianeta formato principalmente da oceani, la luna cinerea riflette il loro colore bluastro”. Ottima spiegazione con un accento non poco romantico: quando guardiamo la luna cinerea stiamo osservando il riflesso dei nostri mari sulla Luna. Questo si che è Amore.
Purtroppo però la giustificazione è sbagliata. La Terra non riflette luce blu perché è coperta principalmente da mari. La Terra non è il pianeta azzurro perché coperto dagli oceani. Vista dal pianeta Marte, la Terra appare come un puntino blu non perché coperta dai mari.
A questo punto fatemi fare una domanda: avete mai osservato il mare dall’alto? Vi siete mai tuffati in una piscina profonda? Il mare è si blu ma quello che osserviamo è una piccolissima parte della luce che incide sulla sua superficie e pertanto la componente di luce solare riflessa dai mari è piccolissima. Se fosse per i mari quindi il nostro pianeta più che azzurro sarebbe nero. Quindi cos’è che rende il nostro pianeta blu? La risposta è semplice. Come diceva una canzone di un tempo “nel blu dipinto di blu, felice di stare lassù”: il cielo. È il blu del cielo che illumina la Luna e che fornisce al nostro pianeta quella tipica colorazione bluastra. Ma perché il cielo è azzurro/blu?
La spiegazione è la nota diffusione di Rayleigh. Questa dice che, quando una luce bianca (solare) attraversa un’atmosfera trasparente (cioè formata da particelle piccolissime, l’aria) questa devia con un angolo diverso a seconda della componente (colore) considerata. In particolare la luce viola viene diffusa maggiormente di quella rossa. Questo spiega perché seppur il Sole sia una stella verde (avete capito bene!) appare giallo quando osservato dalla superficie terrestre. Infatti, la componente viola/blu viene diffusa dalla nostra atmosfera dando luogo al colore del cielo che però vediamo solo blu data la scarsa sensibilità dell’occhio umano al viola,  mentre la componente giallo/rossa prosegue dritta dandoci la sensazione di un disco solare di colore arancio. Al tramonto poi, dove lo diffusione di Rayleigh diventa più efficiente (aumenta il numero di particelle che la luce attraversa), allora persino il giallo e l’arancio vengono diffusi (da cui il colore del tramonto) mentre il disco solare ovviamente diventa di colore sempre più rosso, unica componente in grado ancora di andare dritta.
Quindi riassumendo la luce solare diffusa dall’atmosfera terrestre è la componente che viene inviata verso la Luna e che conferisce alla luce cinerea la tipica colorazione bluastra. Ovviamente la parte del leone la fa la luce bianca direttamente riflessa dalle nuvole e dai ghiacciai ma questa ovviamente è bianca e quindi non fornisce dominanti colorate.
Tornando al Sole, la nostra è una stella verde che però apparirebbe all’uomo comunque bianca anche se osservata dallo spazio dove non abbiamo diffusione di Rayleigh. Infatti l’essere umano non è in grado di vedere stelle di colore verde che appaiono bianche per motivi fisiologici.

Figura 3: la vegetazione come appare in luce (vicino) infrarossa.

Come avrete letto, in questo articolo abbiamo sfatato molti miti (a proposito, il mare non è blu perché riflette la luce del cielo!) e forse scoperto cose sconvolgenti. Una certezza però c’è rimasta: tutto non è com’è, ma come appare ai nostri occhi. Sapete ad esempio che la vegetazione riflette quasi totalmente la radiazione infrarossa (vedi figura 3)? Guardando la luna cinerea in infrarosso vedremmo il riflesso delle nostre piante sul suolo lunare. Fantasia? No, tecniche per individuare l’esistenza di vita in futuri esopianeti o di monitoraggio della vegetazione terrestre. Romanticismo galileiano in chiave contemporanea.




Progetto RadioASTRO80

Nell’articolo Radioastronomia a microonde (10-12 GHz), abbiamo introdotto l’importanza della Radioastronomia e l’opportunità che questa offre a noi astrofili di accedere ai misteri più profondi del Cosmo. In questo articolo invece ci dedicheremo al progetto RadioASTRO80, ovvero la costruzione di un vero e proprio radiotelescopio amatoriale nel range delle microonde (10-12 GHz). Ricordo che ASTROtrezzi non è responsabile di un qualsiasi danno a strumentazione e/o persone a seguito delle modifiche qui riportate.

Iniziamo pertanto con identificare quali sono i processi chiave che portano ad una “osservazione” radioastronomica. Prima di tutto dobbiamo identificare una sorgente, possibilmente astronomica, di onde radio (nel nostro caso microonde) sufficientemente intensa in modo da poter testare con semplicità il nostro strumento. Come per la luce visibile, anche nelle microonde, la sorgente astronomica più luminosa del cielo è il Sole. Infatti, comportandosi come quello che i fisici chiamano “corpo nero” (che per il Sole potrebbe sembrare una contraddizione), il Sole non emette luce solo nel visibile ma anche in una vasta gamma di radiazioni alcune delle quali raggiungono la superficie terrestre come l’infrarosso, le microonde o le onde radio. A questo punto, l’onda a microonde che arriva dal Sole deve essere raccolta da uno strumento ottico e convertita in un segnale elettrico. Per quanto riguarda la luce visibile, è l’occhio a svolgere questa funzione grazie a coni e bastoncelli in grado di convertire la luce in impulsi nervosi che attraverso il nervo ottico raggiungeranno il nostro cervello. Per le microonde e onde radio, l’occhio viene sostituito dall’antenna. L’antenna astronomica è praticamente identica a quella che utilizziamo per ricevere ad esempio la radio, la TV o i cellulari. Tutte queste tecnologie infatti utilizzando le onde radio come mezzo di comunicazione per trasportare i segnali più svariati. La forma e la tipologia di antenna dipende dalla lunghezza d’onda e quindi dal tipo di radiazione da captare. In particolare le antenne per la TV satellitare, dette generalmente parabole, sono in grado di ricevere segnali radio tra 10 e 12 GHz (microonde). Pertanto puntando un’antenna TV satellitare verso una sorgente astronomica che emette microonde con frequenza compresa tra 10 e 12 GHz, questa emetterà un segnale elettrico proporzionale all’intensità dell’onda ricevuta. Il debole segnale prodotto dall’antenna viene subito amplificato e abbassato in frequenza (dalle decine di GHz al centinaio di MHz) attraverso un componente elettronico noto come Low Noise Block converter (LNB). Al fine di non ottenere un segnale di scarsa qualità, il LNB deve essere poco rumoroso e pertanto deve avere il numero di dB associati al rumore il più basso possibile. Questo mediamente è compreso tra 0.1 ed 1.0 e pertanto LNB da 0.1 o 0.2 dB sono più che sufficienti per costruire un radiotelescopio amatoriale. Il sistema di antenna parabolica da 80 cm e LNB da 0.1 dB di rumore (38.8 dB di guadagno) ha un prezzo di circa 20 euro. A questo punto avete il vostro segnale radio amplificato dal LNB. Con questo potete sbizzarrirvi costruendo sistemi sempre più complessi. Il progetto RadioASTRO80 ne include tre, che funzionano contemporaneamente offrendo al radiotelescopio amatoriale, la massima operatività. In seguito andremo ad analizzarne uno alla volta, partendo dal più semplice ed economico arrivando al sistema più complesso (e ovviamente costoso).

MISURA AUDIO DI UN SEGNALE RADIOASTRONOMICO

La cosa più semplice che si può fare un segnale radioastronomico è quello di trasformarlo in un segnale acustico. Per fare ciò ci si può avvalere di una tecnologia economica, presente sul mercato per fini ovviamente diversi da quello astronomico ovvero il satellite finder. Questo strumento, che in italiano suonerebbe come “il cercatore di satelliti” permette, una volta collegato al sistema antenna + LNB, di identificare un satellite TV emettendo un segnale tanto più intenso quanto più intenso è il segnale raccolto dall’antenna. Questo garantisce un comodo ed economico puntamento delle antenne paraboliche. Ma per noi radioastronomi amatoriali, il satellite finder è un generatore di suoni che sono tanto più acuti quanto intensa è la radiosorgente astronomica che andiamo a puntare. Quindi non ci resta che andare a comprare un satellite finder, del costo di circa 10 euro, attaccarlo all’uscita del LNB e puntare l’antenna verso il Sole. Sentiremo un segnale che aumenterà di intensità finché il Sole non entrerà al centro del campo visivo dell’antenna. In questo modo possiamo puntare la parabola alla destra del Sole, ed “ascoltarne” il suo transito. Questo è il sistema più semplice per costruirsi un radiotelescopio amatoriale. Dobbiamo comunque riportare un problema connesso al satellite finder. Questo oggetto è pensato per essere collegato al decoder della TV satellitare, il quale fornisce in uscita una tensione di 15V, utile per alimentare il satellite finder e l’LNB. Purtroppo essendo il nostro utilizzo astronomico, se vogliamo svincolarci dalla presenza del decoder TV, è necessario fornire al satellite finder ed all’LNB una tensione esterna. Questa può essere fornita o tramite un convertitore 220 V AC (alternata) in 15 V DC (continua) o tramite un pacco batterie costituito da due batterie da 9V. Seppur quest’ultima configurazione fornisce una corrente continua da 18V, questa è supportata dal sistema anche se la tensione massima consigliata è di 17V. In ogni caso preferiamo l’utilizzo di un convertitore AC-DC in quanto la stabilità di amplificazione dipende dalla stabilità dell’alimentatore, garantita maggiormente dalla rete elettrica rispetto alle normali batterie.

La tensione andrà portata all’ingresso “decoder TV” del satellite finder. L’elettronica interna del satellite finder con relativi ingressi LNB e decoder TV sono mostrati in Figura 1.

Figura 1: l’elettronica interna del satellite finder.

MISURA ELETTRICA DI UN SEGNALE RADIOASTRONOMICO

Il satellite finder però non genera solo un segnale audio, ma la stessa tensione che alimenta il “cicalino”, permette ad un’asticella analogica di muoversi su una scala graduata la quale quantifica l’intensità del segnale a microonde (vedi Figura 2).

Figura 2: l’asta graduata (da 1 a 10) dell’intensità del segnale

Se il segnale risulta troppo debole, sia dal punto di vista audio che visivo (asticella segna valori bassi tipo 1 o 2), è possibile amplificare il segnale agendo sulla manopola graduata presente sul satellite finder (Vedi figura 2). Dal punto di vista elettronico, il satellite finder acquisisce il segnale dal LNB, lo amplifica ulteriormente producendo una tensione massima di 500 mV in grado di alimentare contemporaneamente il cicalino e l’asta graduata. Questo segnale elettrico compreso tra 0 e 500 mV può essere estratto dai contatti dell’asticella graduata (vedi Figura 1) e misurato con un tester o portato in ingresso della porta microfono di un PC. Noi consigliamo comunque di utilizzare un tester, più sicuro in quanto prima di connettere la tensione del satellite finder al PC bisognerebbe valutarne l’accoppiamento. Grazie a questo sistema possiamo quantificare le nostre osservazioni ottenendo alla fine una misura in tensione del nostro segnale radioastronomico.

DIGITALIZZAZIONE DEL SEGNALE RADIOASTRONOMICO

Il segnale in tensione generato dal satellite finder e compreso tra 0 e 500 mV può essere amplificato ulteriormente grazie all’utilizzo di un amplificatore operazionale (a singola alimentazione 0, +V e non ad alimentazione duale). Questo può essere alimentato con una singola batteria a 9 V ed utilizzando delle resistenze opportune permette di amplificare il nostro segnale di tensione di un fattore 10, ottenendo quindi all’uscita del sistema satellite finder + amplificatore operazionale una tensione variabile tra 0 V (assenza di segnale) e + 5 V (massimo segnale). Agendo sull’amplificatore del satellite finder ovviamanete il massimo segnale può essere fatto variare da +5 V a qualche millivolt. Consigliamo come massima tensione di uscita un valore pari a circa +4 V. Questo mette in sicurezza il sistema di digitalizzazione che ora andremo a descrivere.

Al fine di quantificare e registrare il nostro segnale radioastronomico possiamo digitalizzare il segnale analogico di tensione prodotto dal sistema satellite finder + amplificatore operazionale. Per fare ciò ci serve un Analog to Digital Converter (ADC) ovvero un componente elettronico in grado di trasformare un segnale di ampiezza X in un numero digitale memorizzabile su PC pari a X. L’ADC più economico e che permette di interfacciarsi con un PC in modo semplice è Arduino Uno. Questo costa circa 20 euro e necessita di un cavo USB ed un PC per la memorizzazione dei dati (si può usare anche un shield con scheda SD incorporata). Arduino vuole in ingresso un segnale analogico di tensione massima pari a +5 V (da qui il valore massimo consigliato di +4 V) e fornisce un segnale digitalizzato a 10 bit con una frequenza di campionamento di 60 Hz. Questo significa che se in ingresso forniamo un segnale di ampiezza massima pari a +4 V, Arduino produrrà un segnale digitale (numero) con risoluzione 4 mV, 60 volte al secondo. Questi dati verranno registrati su disco fisso in formato TXT e potranno essere utilizzati per una futura analisi. Il programma che si occupa della scrittura su file è detto radioastroino_v1.pde ed è stato sviluppato da ASTROtrezzi in Processing 2. Il listato è riportato qui sotto:

import processing.serial.*;

import java.text.*;

import java.util.*;

import cc.arduino.*;

 

Arduino arduino;

int analogPin = 0;

int value = 0;

 

PrintWriter output;

DateFormat fnameFormat= new SimpleDateFormat(“yyMMdd_HHmm”);

DateFormat timeFormat = new SimpleDateFormat(“hh:mm:ss”);

String fileName;

Serial myPort;

char HEADER = ‘H’;

 

void setup(){

 arduino = new Arduino(this, Arduino.list()[0], 57600);

 Date now = new Date();

 fileName = fnameFormat.format(now);

 output = createWriter(fileName + “.txt”);

}

 

void draw(){

 String time; 

 String timeString = timeFormat.format(new Date());

 value = arduino.analogRead(analogPin);

 output.println(timeString + ” ” + value);

}

 

void keyPressed(){

    output.flush();

    output.close();

    exit();

}

Bisogna ricordare che prima di lanciare questo programma è necessario eseguire la scrittura sul firmware di Arduino eseguendo il programma Examples > Firmata > StandardFirmata in linguaggio Arduino.

Se un segnale radioastronomico non è particolarmente veloce (come un transito che solitamente dura una decina di minuti), allora è possibile aumentare la risoluzione del nostro segnale digitale mediando il valore in tensione su un secondo di presa dati. Il programma che realizza l’analisi dei dati è detto radioastroino.cpp ed è stato sviluppato da ASTROtrezzi in C++ come macro per CERN ROOT. Il listato è riportato qui sotto.

{

cout << “RADIOASTROINO on CERN/ROOT” << endl;

ifstream fradioastroino;

fradioastroino.open (“radioastroino.txt”);

int i, N;

string timefile;

float adu[60];

float average[3600];

float errorx[3600];

float errory[3600];

float time[3600];

N = 0;

for(i = 0; i < 60; i++) adu[i] = 0;

for(i = 0; i < 3600; i++) {average[i] = 0; errorx[i] = 0; errory[i]=((1.0/sqrt(60.0))/1023.0)*5.0; time[3600];}

while(!fradioastroino.eof())

   {

   for(i = 0; i < 60; i++)

      {

      fradioastroino >> timefile;

      fradioastroino >> adu[i];

      average[N] = average[N] + adu[i];

      }

   average[N] = average[N] / 60;

   cout << time [N] << ” ” << average[N] << endl;

   N = N+1;

   time[N] = N; //seconds from start

   }

gr = new TGraphErrors(N,time,average,errorx,errory);

gr->SetTitle(“RadioASTROino”);

gr->GetXaxis()->SetTitle(“Time (sec)”);

gr->GetYaxis()->SetTitle(“ADU”);

gr->SetMarkerStyle(8);

gr->Draw(“ALP”);

fradioastroino.close();

}

Il software, interamente sviluppato da ASTROtrezzi è open source e pertanto può essere distribuito e modificato. Consigliamo comunque la segnalazione all’indirizzo davide@astrotrezzi.it . Il sistema antenna + LNB + satellite finder (alimentato esternamente da rete elettrica domestica) + amplificatore operazionale + Arduino + PC, detto RadioASTRO80 è mostrato in Figura 3. Questo può essere montato comodamente su una montatura equatoriale. Nel caso di RadioASTRO80 abbiamo utilizzato una SkyWatcher NEQ6 con attacco Losmandy.

Figura 3: il progetto RadioASTRO80 in funzione.

Il risultato ottenuto dal primo test di RadioASTRO80, consistente nella misura del transito solare, è mostrato in Figura 4.

Figura 4: transito solare “osservato” con RadioASTRO80 ed elaborato con radioastroino.cpp.




Cometa C/2014 Q2 (Lovejoy)

Anche quest’anno una cometa di nome Lovejoy varcherà i cieli invernali dando uno spettacolo unico nel suo genere. Molto diversa da quella che illuminò i cieli del 2014 (vedi sezione comete, cometa C/2013 R1 (Lovejoy) la C/2014 Q2 è una cometa caratterizzata da un’imponente chioma ed una coda appena percettibile. La sua traiettoria apparente attraverserà la volta celeste da sud verso nord raggiungendo la massima luminosità nei giorni intorno all’11 gennaio 2015 quando si trovava nella costellazione del Toro. In tale occasione sarà in principio possibile osservarla ad occhio nudo da cieli particolarmente bui e prima che la Luna sorga. L’andamento della magnitudine in funzione del tempo è riportato in Figura 1.

ASTROtrezzi ha seguito la cometa dalla “prima” apparizione a sud, nella costellazione della Colomba il giorno 20/12/2014. Purtroppo l’elevato inquinamento luminoso presente nel nord Italia ne ha impedito qualsiasi forma di ripresa sino al 30/12/2014 quando la sua elevazione ha raggiunto valori considerevoli. Con l’inizio di gennaio 2015, la Luna ormai piena ne ha impedito nuovamente le riprese astrofotografiche anche se la bellissima chioma è stata osservata il giorno 05/01/2015 da Briosco (MB) con un rifrattore acromatico da 15 cm.

UPDATE: cometa ripresa ed osservata il giorno 11/01/2015 da Briosco (MB). L’osservazione è stata effettuata con un monocolo 15 x 70. La cometa era visibile come un batuffolo sferico molto luminoso privo di coda. In fotografia, effettuata con filtro IDAS dato l’elevato inquinamento luminoso, la coda è visibile seppur con non poche difficoltà. Purtroppo la presenza di forte vento non ha permesso la ripresa a focali più elevate.

UPDATE: cometa ripresa il giorno 12/01/2015 da Sormano (CO). Purtroppo la presenza di nubi non ha permesso nessun tipo di integrazione. La coda è visibile con difficoltà in foto.

Seguiteci controllando quotidianamente questa pagina di aggiornamento. Maggiori dettagli verranno forniti giorno dopo giorno indicati con la scritta UPDATE. Inoltre consigliamo la lettura del capitolo comete della “Guida all’Astronomia“.

Figura 1: Luminosità della cometa C/2014 Q2 (Lovejoy). Dati Minor Planet Center

La cometa Lovejoy tornerà a brillare tra i cieli non illuminati dalla Luna a partire dal 09 gennaio 2015 e pertanto l’osservazione binoculare o telescopio potrà diventare davvero gratificante. Le effemeridi della cometa (dati Minor Planet Center) e una mappa del cielo per seguire la cometa, calcolate per la località Sormano (CO) ma generalizzabili praticamente a tutta Italia, sono riportate qui sotto per i mesi di dicembre 2014 – marzo 2015. Di seguito una breve guida su come fotografare la cometa C/2014 Q2 e come seguirla con il software Stellarium.

Figura 2: Effemeridi della cometa C/2014 Q2 (Lovejoy) per la località di Sormano (CO)

Posizione della cometa C/2014 Q2 (Lovejoy) - mappa realizzata con Skychart 3.10

SEGUIRE LA COMETA CON STELLARIUM [ contributo di Matteo Manzoni]

E con l’avvicinarsi in questi giorni della cometa Lovejoy, vediamo come aggiungerla in Stellarium per poterla agevolmente localizzare nel cielo invernale. Per prima cosa dobbiamo avviare Stellarium andando poi in “Finestra di configurazione” o premendo il tasto F2. Selezioniamo quindi il tab “plugins”. Nell’elenco che appare selezionare il plugin “editor sistema solare”. Abilitiamo selezionando la voce “carica all’avvio” e poi premendo il tasto configura.
Nella schermata che viene mostrata dovete selezionare il tab “sistema solare” e poi cliccare sul pulsante “Importa elementi orbitali nel formato MPC…”
Verrà ora mostrata la schermata “importa dati” e selezionando il tab “Ricerca online” si dovrà inserire nella barra di ricerca la denominazione “C/2014 Q2” e poi premere la lente d’ingrandimento per avviare la ricerca.
Selezionare come da immagine il nuovo oggetto mostrato e poi premere su “aggiungi oggetti”.
Ora basterà chiudere tutte le schermate aperte e premendo il tasto F3 si aprirà la schermata di ricerca in cui basterà inserire il nome della cometa “C/2014 Q2” e ci verrà mostrata la posizione esatta della cometa.
.
FOTOGRAFARE LA COMETA LOVEJOY
Una cometa è uno degli oggetti più affascinanti da fotografare e a seconda dello strumento utilizzato può diventare anche uno degli astri più difficili da riprendere. Infatti oltre a partecipare al moto apparente di rotazione con le altre stelle fisse, le comete posseggono anche un loro moto proprio rispetto a queste ultime. Ecco quindi che una montatura astronomica motorizzata non è più, da sola, in grado di inseguire le comete. Quindi che fare?
  • RIPRESA DELLA COMETA C/2014 Q2 CON CAVALLETTO FOTOGRAFICO: utilizziamo l’applicazione VIRGO sviluppata da ASTROtrezzi sia per smartphone che per PC al fine di calcolare il massimo tempo di esposizione possibile per la latitudine a cui si trova la cometa. Potete usare la mappa presente in questo articolo al fine di scegliere la giusta costellazione a seconda del periodo in cui deciderete di osservare la cometa. Consigliamo di aprire il diaframma dell’obiettivo il più possibile mentre per gli ISO è consigliabile utilizzare valori medi compresi tra 400 e 800. Considerando le dimensioni angolari della cometa, questa appare già visibile e può pertanto essere ripresa con il paesaggio a focali corte, intorno ai 50mm. Consigliamo comunque riprese a 70-100 mm in modo da vedere i tenui dettagli della coda.
  • RIPRESA DELLA COMETA C/2011 L4 CON UNA MONTATURA ASTRONOMICA: purtroppo il problema del moto proprio delle comete rispetto alle stelle fisse, illustrato nel paragrafo precedente, non si può risolvere banalmente con una montatura astronomica seppur motorizzata. Infatti questa è in grado di seguire il movimento delle stelle e non delle comete. Come fare allora? Esiste solo una possibilità: inseguire la cometa invece delle stelle! Questo può essere fatto solo attraverso una guida (manuale o autoguida) inseguendo il nucleo della cometa invece della tipica stella di guida. Ovviamente, quando andremo a sommare le nostre immagini, dovremmo allinearle rispetto al nucleo della Lovejoy generando evidentemente il mosso nelle stelle. Il risultato finale sarà quindi una cometa perfettamente a fuoco e ben esposta con uno star-trail di fondo. Alcuni software come DeepSkyStacker permettono di ottenere sia stelle che cometa puntiformi attraverso sistemi più o meno complessi di combinazione delle immagini. Unico punto dolente, ma purtroppo non prevedibile, è la possibilità che il nucleo risulti particolarmente attivo modificando velocemente la forma della coda. In tal caso bisognerà prestare attenzione alle immagini da sommare al fine di non ottenere un “mosso” sulla coda della cometa.

Riportiamo in seguito la lista delle immagini della cometa C/2014 Q2 (Lovejoy) ripresa da ASTROtrezzi:

C/2014 Q2 (Lovejoy) - 30/12/2014

C/2014 Q2 (Lovejoy) - 11/01/2015

C/2014 Q2 (Lovejoy) - 12/01/2015

C/2014 Q2 (Lovejoy) - 24/01/2015




Radioastronomia a microonde (10-12 GHz)

Le microonde sono un particolare tipo di radiazione elettromagnetica caratterizzata dall’avere frequenza compresa tra i 3 e i 300 GHz. L’Universo emette praticamente in tutte le lunghezze d’onda e pertanto è possibile “osservarlo” anche nelle microonde. Purtroppo però, il range a cui è sensibile il nostro occhio è limitato a quella stretta regione dello spettro elettromagnetico detta luce visibile caratterizzata dall’avere lunghezza d’onda compresa tra circa 380 e 760 nm. Le microonde sono invece molto più lunghe, spaziando tra i 10 mm ed i 10 cm e pertanto invisibili all’occhio umano. Proprio per questo motivo si rende necessario l’impiego di particolari strumenti in grado di trasformare questa luce “invisibile agli occhi” in qualcosa percettibile con i nostri organi di senso. Tali strumenti sono le antenne o radiotelescopi i quali, opportunamente collegati ad un computer, sono in grado di trasformare il segnale elettrico generato dall’onda in uno sonoro e/o luminoso. Di tutto il range di frequenze dell’Universo a microonde, andremo qui ad analizzare quello compreso tra 10 e 12 GHz. Il motivo è molto semplice: in questo intervallo di frequenza abbiamo già la tecnologia necessaria tra le mani. Altre frequenze nelle microonde o radio richiedono una strumentazione più sofisticata, specializzata e spesso di grandi dimensioni (superiori al metro). Inoltre le conoscenze di elettronica non sono così banali come quelle necessarie per autocostruirsi un radiotelescopio a microonde nel range 10-12 GHz. Ma di che tecnologia stiamo parlando? La risposta è molto probabilmente sopra tetto di casa vostra: l’antenna per la ricezione della TV satellitare. Utilizzando una banale antenna parabolica e pochissima altra strumentazione elettronica dal prezzo spesso inferiore alla decina di euro potrete costruire il vostro primo vero radiotelescopio. In particolare il post “RadioASTRO80” descrive come realizzare un’antenna a microonde da 80 cm di diametro per utilizzo astronomico, sia divulgativo che di ricerca scientifica amatoriale. Tale tipo di radiotelescopio ci permette di accedere a quella parte di Universo invisibile agli occhi: il mondo a microonde. Ma cosa possiamo “osservare” nell’Universo a microonde e radio?

RadioASTRO80 su montatura SkyWatcher NEQ6

Iniziamo classificando le possibile sorgenti astrofisiche in tre categorie: termiche, non termiche e sorgenti a spettro discreto. Le sorgenti termiche, sono tutti quegli oggetti che emettono con uno spettro tipico di corpo nero. Queste sono le stelle come il nostro Sole, i pianeti o la radiazione di fondo cosmico (CMB). Radiazioni non termiche sono quelle invece originate da processi di emissione tipo Bremsstralung o sincrotrone come getti di gas in galassie attive. Infine le sorgenti a spettro discreto sono quelle in cui l’emissione avviene a frequenza costante a seguito di fenomeni di spin-flip dell’idrogeno neutro (HI) con emissione a lunghezza d’onda di 21 cm, linee di ricombinazione o ancora linee molecolari (CO, OH, …).

Ovviamente non tutte queste sorgenti sono “visibili” nel range 10-12 GHz. Di quelle “osservabili”, la sorgente più luminosa rimane il Sole, sia nelle sue regioni quiescenti che attive. Quasi 100 volte più debole in termini di flusso troviamo la Luna che riflette la “luce” a microonde del Sole. 1’000 volte più debole abbiamo invece la Via Lattea ed infine 10’000 volte più debole, al limite della ricezione con strumenti amatoriali, troviamo alcune radiosorgenti come Cassiopea A (ovvero la nebulosa omonima), Taurus A (la nebulosa M1 nel Toro) e Orion A (la nebulosa M42 in Orione).

Purtroppo alcune sorgenti importanti come la CMB o la linea a 21 cm dell’idrogeno neutro sono fuori dal range di “visibilità” a 10-12 GHz. Ultima sorgente sporadica, ma non meno importante delle altre qui descritte, sono le meteore che durante la loro fase “esplosiva” in atmosfera emettono anche nelle microonde.

In questo articolo abbiamo visto quali possono essere le risorse che la radioastronomia a microonde  ci mette a disposizione. Il progetto RadioASTRO80 dimostra infine come, con poche decine di euro, sia possibile avere tra le mani un radiotelescopio amatoriale di buona qualità con cui fare della semplice ricerca amatoriale. Non vi resta quindi che mettere le mani a tester, cacciaviti, PC e saldatori e prepararvi a costruire il vostro primo radiotelescopio a microonde!




Studio della Nova Delphini 2013 (PNV J20233073+2046041)

ARTICOLI DI ASTRONOMIA AMATORIALE
VOLUME 2 NUMERO 3 (2013)

ABSTRACT

La Nova Delphini 2013 è stata scoperta il 14 Agosto 2013 dall’astrofilo giapponese Koichi Itagaki ed è tutt’ora visibile con binocoli e piccoli telescopi nella costellazione del Delfino. Il massimo di luminosità della nova, pari a magnitudine +4.3, è stato raggiunto il 16 Agosto 2013. In questo articolo riportiamo le immagini della Nova Delphini 2013 riprese da Briosco il giorno 17 Agosto 2013, nonché la misura dello spettro elettromagnetico della stessa effettuata il giorno seguente mediante un reticolo di diffrazione tipo StarAnalyser 100 (100 linee/mm). Questa misura ci ha permesso di classificare Nova Delphini 2013 come una nova di tipo Fe II e di valutare, tramite l’allargamento Doppler delle linee di emissione HI presenti, la velocità di espansione della nebulosa associata pari a 1621 km/s.

SCARICA L’ARTICOLO IN FORMATO PDF




Vedere i pianeti ad occhio nudo

Se non fosse per le fasi lunari e le strutture variabili del nostro Sole come le macchie o le protuberanze, l’Universo può apparire statico, dato che i tempi “evolutivi” del Cosmo sono ben più lunghi della vita di un essere umano. Il lettore potrebbe quindi pensare che dopo anni di osservazioni e di riprese fotografiche la vita dell’astrofilo sia destinata a diventare noiosa e poco stimolante. Eppure non tutte le “stelle” del cielo rimangono “fisse” nel corso dei mesi e degli anni; alcune si muovono percorrendo nel cielo lo stesso tragitto compiuto dal Sole e dalla Luna e noto come eclittica. Tali stelle presero in passato il nome di pianeti ovvero stelle erranti. Ecco quindi che i pianeti appaiono sotto tutti gli effetti come stelle e non solo: alcuni di essi rappresentano le “stelle” più luminose del cielo e quindi facilmente visibili ad occhio nudo anche da centri cittadini. Il movimento dei pianeti rispetto alle stelle fisse non è così veloce come uno potrebbe aspettarsi: nell’arco di un’intera notte è infatti difficile avvertirne lo spostamento. Tale moto diviene evidente solo con il passare dei giorni o dei mesi, specialmente se il pianeta si trova basso sull’orizzonte.
I pianeti più luminosi visibili da Terra sono Venere di colore bianco e Giove di colore giallo. A seguire Marte, di colore rosso mattone, che per motivi orbitali varia di molto la sua luminosità passando dall’essere una tra le stelle più luminose del cielo ad una stella di media luminosità. Mercurio, di colore arancione, è piuttosto luminoso ma essendo sempre vicino al Sole è difficile da distinguere tra le luci di alba e tramonto. Infine via via più deboli troviamo Saturno e Urano. Il primo di colore giallo ed il secondo, al limite della visibilità ad occhio nudo, di colore azzurro. Per osservare l’ultimo pianeta del Sistema Solare è invece necessario utilizzare un binocolo di medie dimensioni o un piccolo telescopio.
Tutti i pianeti ruotano intorno al Sole muovendosi su un piano che visto in sezione rappresenta l’eclittica. Rispetto all’orbita descritta dal nostro pianeta, è possibile distinguere tra pianeti interni ed esterni. I primi si trovano sempre tra noi ed il Sole e pertanto è impossibile osservarli nel cuore della notte. Questi inoltre potranno apparire in fase o transitare sul disco solare. I pianeti esterni d’altronde potranno essere visibili anche nel cuore della notte. Il punto di massima visibilità e di minima distanza dal nostro pianeta è quella in cui il pianeta esterno si trova allineato con la Terra ed il Sole. Tale condizione prende il nome di opposizione. I pianeti esterni non presenteranno quindi una fase visibile, mantenendosi sempre prossima al 100%, e soprattutto non potranno mai transitare sul disco solare. Ricordiamo infine che i pianeti interni sono Mercurio e Venere, mentre quelli esterni sono Marte, Giove, Saturno, Urano e Nettuno.

Come appare Saturno in un telescopio amatoriale.

I pianeti però non sono gli unici astri “erranti”. Esistono infatti corpi minori, e quindi meno luminosi, che si spostano tra le stelle fisse. Uno di questo venne addirittura ad occupare la posizione di pianeta fino al 24 Agosto del 2006: Plutone. Stiamo parlando di pianeti nani e asteroidi. I primi sono corpi celesti simili ai pianeti ma di piccole dimensioni, mentre i secondi sono corpi rocciosi di piccole dimensioni con orbita compresa tra quella di Marte e Giove. I pianeti nani classificati sino ad oggi sono cinque: Cerere, Plutone, Haumea, Makemake ed Eris. Gli asteroidi sono invece migliaia e spesso più che con un nome vengono identificati con una sigla.
Oggetti tanto misteriosi quanto affascinanti sono infine le comete, palle di neve sporca che per instabilità gravitazionali vengono a modificare la propria orbita “cadendo” verso le regioni interne del Sistema Solare. Quando si avvicinano al Sole ecco quindi che il ghiaccio sublima dando luogo a quella che è l’atmosfera cometaria: la chioma. Gas e polveri vengono così emessi nello spazio e conseguentemente spazzati via dal vento solare formando quella che è la coda cometaria. Ricordiamo che il 2013 sarà ricordato per gli abitanti dell’emisfero boreale come l’anno delle comete dato che ben tre comete luminose varcheranno i nostri cieli: la cometa PAN-STARRS, LEMMON ed ISON.  Quando il nostro pianeta, durante il suo moto di rivoluzione intorno al Sole, attraversa i detriti lasciati nello spazio dalle comete abbiamo il manifestarsi del fenomeno degli sciami meteorici. Quindi le meteore o “stelle cadenti” non sono altro che detriti di origine cosmica che, cadendo verso Terra, si “incendiano” emettendo luce. Se una meteora cade sino a sfiorare la superficie terrestre si parla di bolidi. I bolidi possono essere udibili anche a grandi distanti o persino creare danni al suolo. Quando una meteora infine si impatta sulla Terra viene denominata meteorite.
Concludiamo infine ricordando che oltre ai corpi celesti abbiamo i satelliti artificiali e la stazione spaziale internazionale (ISS) che appaiono in cielo come stelle luminose in moto tra le stelle fisse. Queste possono poi scomparire magicamente nel nulla quando passano attraverso il cono d’ombra generato dalla Terra. Alcuni satelliti invece possono ruotare su se stessi velocemente riflettendo come dei flash la luce del Sole. Tali flash che appaiono ad occhio nudo come dei bolidi sono chiamati iridium flash.
Non siete soddisfatti della vastità di oggetti da osservare e riprendere con le vostre fotocamere digitali che vi offre l’Universo? Allora ve ne aggiungiamo altri. Infatti, oltre ai corpi celesti “erranti” esistono altri che variano la loro luminosità nel tempo. Esempi sono le stelle variabiliche cambiano la loro luminosità passando dall’essere visibili ad occhio nudo ad essere faticosamente distinguibili con un binocolo. Il motivo di tale variazione di luminosità dipende dalla natura della stella (sistema doppio che si eclissa reciprocamente, stelle instabile, …).

Esempio di supernova esplosa nella galassia M65

Altri esempi sono le novae, ovvero stelle che per un certo periodo della loro vita vanno incontro a fenomeni esplosivi violenti in grado di aumentarne vertiginosamente la luminosità. Ultimo fenomeno transitorio è l’esplosione di supernova. In questo caso la luminosità della stella, giunta ormai al termine della propria vita, aumenta vertiginosamente, diventando così il corpo più luminoso dell’intera galassia che la ospita. L’esplosione di supernova è un fenomeno raro all’interno di una stessa galassia, ma considerando la quantità enorme di galassie alla portata dei telescopi amatoriali, scopriamo che ogni mese è possibile riprenderne almeno una (vedi Figura). Ben diverso è osservare una supernova all’interno della Via Lattea. L’ultima ad essere esplosa è la nota “stella di Keplero”, osservata nell’ormai lontano 9 Ottobre del 1604. Alcune delle nebulose che oggi osserviamo nel cielo sono resti di quelle imponenti esplosioni.




Vita e Morte delle Stelle

Seppur in quantità minore rispetto al Sole, anche la luce lunare viene diffusa dalla nostra atmosfera donando al cielo notturno una colorazione bluastra. Purtroppo a seguito dell’inquinamento luminoso questo fenomeno non è più osservabile da cieli urbani e suburbani dove la volta celeste appare perennemente di colore giallo-arancione.

Una stella risulta visibile a occhio nudo quando è distinguibile dal fondo cielo. Questo ovviamente nei limiti imposti dalla natura stessa dell’occhio umano. Quindi se il cielo aumenta la sua luminosità discostandosi dal colore nero, se ne deduce che il numero di stelle visibili ad occhio nudo tende mano a mano a diminuire. Il caso limite è ovviamente il cielo diurno dove la diffusione della luce solare cela all’occhio umano la visione di tutte le stelle presenti. Se pertanto vogliamo osservare un cielo ricco di stelle dobbiamo cercare un cielo buio che si traduce in basso inquinamento luminoso e assenza di Luna in cielo. Questo spiega perché gli astrofili osservano gli oggetti celesti prevalentemente in condizioni di Luna Nuova e perché gli Osservatori Astronomici aprono le loro porte al pubblico in Luna Piena.
È giunto quindi il momento di fare il grande balzo. Scegliete quindi il weekend più vicino alla Luna Nuova, prendete la vostra automobile e correte il più lontano dai centri cittadini. Dato che a diffondere la luce sono principalmente le particelle di acqua presenti in atmosfera, cercate un posto asciutto come i valichi alpini o le cime di colli. A questo punto, aspettate due ore circa dopo il tramonto in modo da dare il tempo al Sole di andare sufficientemente sotto l’orizzonte con la sua luce accecante e alzate gli occhi al cielo: ciò che vedrete sarà un’esperienza unica e indimenticabile. Le stelle in cielo saranno tantissime e le più luminose sembreranno cadervi in testa. Solo dopo una mezz’ora riuscirete ad orientarvi e a distinguere quelle poche stelle che avete imparato a riconoscere dai cieli inquinati di casa vostra.
Ora che avete cominciato a ritrovare le vostre stelle di guida, siete pronti per cominciare a navigare tra le stelle che inondano la volta celeste. Ma prima di fare ciò osservate con attenzione le stelle più luminose. Non sono tutte dei puntini bianchi. Alcune di esse avranno una colorazione più giallognola, alcune rosso mattone, altre azzurro chiaro. Le stelle assumono infatti colorazioni differenti a seconda della loro natura e del loro stato evolutivo. Purtroppo anche l’esperienza di osservare i colori delle stelle sta diventando un lontano ricordo per gli astrofili che vivono sotto cieli urbani o suburbani.
Quei puntini luminosi (ora potremmo dire anche colorati) che chiamiamo abitualmente stelle sono in realtà sfere di gas del tutto simili al nostro Sole, poste a distanze enormi da noi. Le dimensioni di questi “Soli” variano moltissimo passando da circa 20 km di diametro a 2600 volte il diametro del nostro Sole.
Ancora una volta le dimensioni di una stella dipendono dalla loro natura e dal loro stato evolutivo. Infatti, come gli esseri viventi, anche le stelle nascono, crescono e muoiono. Volendo semplificare e generalizzare l’evoluzione stellare potremmo affermare che, da una nube di gas primordiale, condensarono in un passato più o meno lontano una o più stelle, così come le gocce di pioggia condensano dalle nuvole. La forza di gravità responsabile di tale condensazione ha permesso alle regioni centrali della stella neonata di raggiungere temperature elevatissime in grado di innescare reazioni di fusione termonucleari. Saranno proprio queste ultime a permettere alla stella di non collassare ulteriormente e di brillare per miliardi di anni. In questa condizioni di stabilità si trova ad esempio ora il nostro Sole. Dopo miliardi di anni però il “combustibile nucleare” presente nel cuore della stella tende ad esaurirsi. Ecco quindi che con il venire meno delle reazioni di fusione termonucleare la stella ritorna in una fase di instabilità e a seconda della sua massa può procedere attraverso vie più o meno tormentose che la porteranno a liberarsi di quasi tutto il gas che la compone attraverso processi più o meno esplosivi. Il gas così liberato nello spazio prende il nome di nebulosa. Proprio in queste nebulose potranno successivamente nascere nuove stelle. Quando la stella libera il proprio gas in maniera non violenta, allora la nebulosa assume una forma sostanzialmente sferica e si parla di nebulose planetarie (vedi Figura).

Nebulosa planetaria nella costellazione della Volpetta

Il nostro Sole finirà la propria esistenza generando una nebulosa planetaria. Il nome “planetario” deriva dal fatto che in passato, quando la qualità ottica dei telescopi era piuttosto bassa, queste nebulose venivano confuse con dischi planetari.
Seppur deboli rispetto alle stelle, le nebulose sono visibili sia ad occhio nudo che ovviamente attraverso binocoli o telescopi. Come detto in precedenza, da una nube primordiale possono nascere più stelle contemporaneamente che pertanto appariranno in cielo in forma di gruppi, per poi dissolversi nel corso di miliardi di anni. Tali gruppi di stelle, alcuni dei quali visibili facilmente ad occhio nudo, prendono il nome di ammassi aperti.
La distanza tra una stella e l’altra dell’ammasso è però molto grande tanto da ritenere le stelle come sistemi indipendenti. Altre volte però due o più stelle possono trovarsi così vicine da cominciare a ruotare le une intorno alle altre. In questo caso si parla di sistemi multipli a possono essere osservate con piccoli telescopi. Quando le stelle del sistema sono solo due si parla di stelle doppie. Ovviamente due stelle molto vicine in cielo non è detto che siano legate fisicamente. Infatti potrebbe essere solo un allineamento prospettico tra stelle molto lontane tra loro. In questo caso si parla di stelle doppie prospettiche. Una stella doppia prospettica assai nota è la coppia Alcor e Mizar che costituisce una delle sette stelle dell’Orsa Maggiore.
Ma le stelle sono distribuite uniformemente nella volta celeste? Se la osservate in primavera la risposta sembrerebbe essere si, ma osservando il cielo notturno in tutte le altre stagioni osserverete una striscia lattiginosa attraversare il cielo. Proprio in questa striscia troverete il maggior numero di nebulose ed ammassi aperti visibili ad occhio nudo. Si chiama Via Lattea è rappresenta una vera e propria “nube” di stelle. Se infatti prendete un binocolo e percorrete la Via Lattea scoprirete che quella macchia lattiginosa non è altro che una distesa quasi infinita di stelle. In realtà tutte le stelle visibili di notte ed il nostro stesso Sole appartengono a questo vastissimo insieme di stelle che chiamiamo Galassia.
Se ora guardiamo nel cielo più profondo è possibile osservare altri insiemi di stelle del tutto simili alla nostra Galassia. Sono le galassie (con la “g” minuscola) di cui la più vicina, nota come galassia di Andromeda, è visibile persino ad occhio nudo da cieli particolarmente bui.
Scopo di questo post è di dare al lettore la terminologia astronomica necessaria per comprendere i soggetti di future riprese astrofotografiche. Non è nostro scopo dare una descrizione completa di tali corpi e fenomeni celesti. Il lettore interessato potrà trovare tali informazioni in qualsiasi libro di Astronomia.




Luna e Sole

Potremmo affermare che tra tutti i corpi celesti, la Luna e il Sole sono quelli più noti anche tra quelle persone non appassionate di Astronomia. In passato erano importantissimi, dato che con il loro moto, determinavano il passaggio del tempo. Il Sole è la stella più vicina alla Terra e questo fa si che essa appaia come l’oggetto più luminoso del cielo. La sua luminosità è così elevata che la luce solare viene diffusa dall’atmosfera terrestre che pertanto si illumina coprendo così la luce delle altre stelle. Questo è il motivo per cui di giorno non riusciamo ad osservare nessun corpo celeste ad eccezione della Luna, del pianeta Venere e di eventuali fenomeni transienti come comete, meteore o esplosioni di supernovae. Grazie all’ausilio di filtri specializzati è possibile osservare una regione della nostra stella nota come fotosfera, che potremmo definire come la “superficie” del Sole. Questa appare come una superficie luminosa uniforme, solcata a volte da macchie scure e filamenti brillanti. Le prime sono note come macchie solari e rappresentano delle regioni più fredde della fotosfera. Queste prendono parte alla rotazione solare e evolvono nel tempo modificando continuamente la loro forma e dimensione. Il Sole presenta dei periodi in cui è ricco di macchie solari, alternati a periodi di apparente quiescenza. Tali periodi prendono rispettivamente il nome di massimo e minimo solare. La distanza temporale tra due massimi solari è nota come ciclo solare ed è pari a circa 11 anni. Le regioni più brillanti della fotosfera sono le facole e in contrapposizione alle macchie solari sono regioni particolarmente calde. Grazie a particolari telescopi, noti come telescopi solari H-alfa, è possibile osservare la regione sovrastante la fotosfera, nota come cromosfera. La cromosfera potremmo interpretarla come “l’atmosfera solare”. Le strutture più evidenti della cromosfera sono le protuberanze solari; immensi getti di gas e plasma che raggiungono spesso dimensioni enormi pari a parecchie volte il diametro dell’intera Terra. La cromosfera è visibile, insieme alla regione ancor più esterna costituita da gas rarefatto e nota con il nome di corona, durante le eclissi totali di Sole.

Eclissi Totale di Sole - 11/08/1999. Dall'immagine è ben visibile la corona solare.

Durante questi fenomeni visibili da Terra, la Luna si interpone tra il Sole e il nostro pianeta, oscurando così la luce della fotosfera e rendendo visibile la cromosfera. Quando la sovrapposizione non è perfetta e la Luna non riesce a coprire perfettamente il Sole allora si parla di eclissi anulare.
La Luna appare vista dal Terra delle stesse dimensioni angolari del Sole. Questo è dovuto al fatto che il diametro della nostra stella sia circa 400 volte quello lunare e, nello stesso tempo, la Luna sia 400 volte più vicina alla Terra. Condizione fortuita ma che permette il manifestarsi delle eclissi totali così come le conosciamo. La Luna è il nostro unico satellite naturale e ruota intorno a noi, così come su se stessa, con un periodo di circa un mese. Conseguenza di questo sincronismo tra periodo di rivoluzione e rotazione è che la Luna mostra a noi terrestri sempre la stessa faccia. Malgrado questo, a causa del moto di rivoluzione intorno alla Terra, la Luna presenta le fasi. Quando la Luna è completamente illuminata dal Sole si parla di Luna Piena, quando è illuminata per metà Luna al Primo o Ultimo Quarto infine quando non è illuminata e quindi invisibile tra le luci del giorno si dice essere Luna Nuova. Se, durante la fase di Luna Piena, il nostro satellite viene completamente oscurato dal cono d’ombra terrestre, allora si manifesta un’eclissi totale di Luna. Potrete ben capire che le eclissi di Sole avvengono unicamente in Luna Nuova, quando il nostro satellite si trova tra noi ed il Sole. Ingrandendo il disco lunare attraverso un semplice binocolo, teleobiettivo o telescopio è possibile notare alcune conformazioni tipiche quali crateri da impatto, pianure note anche come mari lunari, vallate o catene montuose. Come per la durata del giorno, anche il periodo tra due Lune Piene non è esattamente 27 giorni 7 ore e 42 minuti ovvero il periodo di rivoluzione della Luna detto mese siderale ma 29 giorni 12 ore e 44 minuti a seguito del moto della stella intorno al Sole. Quest’ultimo periodo è detto mese sinodico.




E pur si muove!

Nel post “La volta celeste da cieli urbani e suburbani” abbiamo posto le basi necessarie per individuare i quattro punti cardinali e in particolare la posizione della stella Polare. Ciò, abbiamo detto, è particolarmente semplice nei mesi compresi tra Marzo e Giugno, ossia quando la costellazione dell’Orsa Maggiore è alta sopra l’orizzonte. Quest’ultima frase sottende il fatto che le costellazioni in cielo si muovono. Questo moto non coinvolge le singole stelle ma la volta celeste nel suo complesso, lasciando pertanto invariata la forma delle costellazioni.

Infatti è possibile notare come durante la notte tutte le stelle, fisse nella loro reciproca posizione relativa, sembrano ruotare da est verso ovest tracciando delle circonferenze intorno alla stella Polare ed intorno ad un punto posto sotto l’orizzonte a sud come mostrato in figura.

Figura 1: A sinistra è visibile il moto relativo delle stelle intorno al polo celeste (nord). A destra invece è possibile notare come le stelle più basse a sud incominciano a ruotare intorno all'altro polo celeste (sud)

In realtà questo effetto è una diretta conseguenza del fatto che la Terra ruota su se stessa. Esistono quindi solo due punti nel cielo che non partecipano al moto della volta celeste ovvero quelli che giacciono esattamente sull’asse di rotazione terrestre. Questi punti a seconda che si trovano sopra il polo nord o sud terrestre prendono rispettivamente il nome di polo celeste nord e polo celeste sud. La stella Polare si trova a pochissima distanza dal polo celeste nord e questo spiega perché è l’unica stella che dalle nostre latitudini non cambia mai la sua posizione nel cielo. Purtroppo non esiste una stella luminosa nei pressi del polo celeste sud e questo fa si che, in termini di orientamento il nostro emisfero (boreale) sia sicuramente avvantaggiato rispetto all’altro (australe).

Visto dallo spazio i poli celesti si trovano esattamente sopra i rispettivi poli terrestri. Pertanto un osservatore posto a una latitudine λsulla superficie terrestre osserverà il polo celeste a un’altezza λ (in gradi) sopra l’orizzonte. Per gli astrofili e astrofotografi Italiani quindi la stella Polare si troverà ad un’ altezza compresa tra 35° (Lampedusa) e 47° (Alto Adige) dall’orizzonte nord.

Riassumendo, nel corso della notte, tutta la volta celeste e quindi le stelle, sembrano ruotare rigidamente in senso antiorario intorno ad un unico punto fisso identificato nel nostro emisfero dalla stella Polare. Questo è lo stesso moto che ogni giorno percorrono il Sole, la Luna e tutti i corpi del Sistema Solare. Se ora supponiamo di registrare la posizione di una stella a una determinata ora della notte allora, dopo una rotazione completa della Terra intorno al suo asse, ovvero dopo un giorno, questa dovrebbe trovarsi nella stessa identica posizione. Questo sarebbe vero solo se la Terra non partecipasse al moto di rivoluzione intorno al Sole. Il moto di rivoluzione intorno al Sole fa si che al normale moto di rotazione terrestre si debba aggiungere un moto di rotazione “fittizio” di periodo 365 giorni 6 ore 9 minuti e 10 secondi (anno siderale). Ecco quindi che una stella si troverà nello stesso punto del cielo non dopo 23 ore 56 minuti e 4 secondi, noto come giorno siderale ma dopo circa 24 ore noto come giorno solare vero. In realtà a seguito dell’orbita non perfettamente circolare della Terra e dell’angolo di inclinazione del pianeta rispetto al piano orbitale, il giorno solare vero varia durante l’anno con un minimo di 23 ore 59 minuti e 39 secondi a cavallo del 17 Settembre ed un massimo di 24 ore 0 minuti e 30 secondi a cavallo del 24 Dicembre. Per tale motivo spesso si preferisce usare il giorno solare medio pari a 24 ore esatte.

In questo post abbiamo scoperto quali sono le caratteristiche del moto relativo della volta celeste e l’importanza che la stella Polare ricopre per l’emisfero boreale.




La volta celeste da cieli urbani e suburbani

Soffermarsi ad ammirare un cielo stellato rilassandosi sotto di esso, magari immersi in un fresco prato estivo è un’esperienza fantastica. Ma da questa a sapersi orientare tra quei puntini luminosi vi è un abisso. Abisso che spesso appare profondo e impenetrabile.

I più caparbi solitamente acquistano libri di Astronomia per neofiti pensando di trovarvici la chiave di lettura, la bussola necessaria per orientarsi nel cielo notturno. Eppure sfogliando le mappe celesti non si riesce, almeno le prime volte, a trovare un riscontro con le stelle che vediamo scrutando dalle finestre di casa. Ecco quindi che se non si hanno amici astrofili ci si sente smarriti. In questo post non riporteremo mappe celesti o informazioni generiche ma cercheremo di dare le informazioni necessari per interpretare con la giusta chiave di lettura i libri di introduzione all’Astronomia che trovate in libreria o su ebook.

Cominciamo con il dire che le mappe celesti che trovate nei libri riportano le stelle visibili ad occhio nudo da un cielo a medio-basso inquinamento luminoso. Oggi è possibile ritrovarsi in tali condizioni salendo in montagna o allontanandosi il più possibile da centri abitati. La prima condizione è fondamentale per gli abitanti della Pianura Padana al fine di evitare la presenza di nebbia o foschia che inevitabilmente attenua la luce delle stelle e diffonde la luce artificiale delle città. Sono infatti tali luci, spesso non necessarie o mal progettate, a generare quel bagliore luminescente noto come inquinamento luminoso che va a nascondere la tenue luce delle stelle.

Per imparare ad osservare il cielo notturno con i tradizionali libri di Astronomia è pertanto necessario allontanarsi da casa. Questa condizione sfortunata è purtroppo esperienza comune per la maggior parte degli Italiani che vivono in regioni urbane o suburbane. Inoltre, al fine di comprendere i moti relativi della volta celeste il cielo notturno deve essere osservato con continuità. Questo rende all’apparenza inutile ai fini pratici qualsiasi libro di Astronomia oggi in commercio.

Vediamo quindi di imparare a nuotare nei nostri cieli inquinati per poi tuffarci, i fine settimana, nelle profondità di cieli bui trapuntati da miriadi di stelle.

Cominciamo quindi con il considerare le notti di cielo sereno, senza eccessiva nebbia o foschia. In questa fase di apprendimento sono ideali le notti ventose, capaci di abbassare l’umidità e rendere il cielo particolarmente trasparente.

L’ideale è cominciare ad osservare il cielo in assenza di Luna. Il bagliore del nostro satellite naturale infatti va a peggiorare la qualità della nostra osservazione. Per lo stesso motivo attendete due ore dopo il tramonto in modo che le luci del tramonto abbiano ormai lasciato il passo alla notte. Ovviamente d’estate vi toccherà rimanere svegli più a lungo.

Siete quasi pronti per iniziare il vostro primo viaggio; vi rimane però ancora una cosa da fare: osservare il Sole. Mi chiederete che senso ha osservare il Sole per orientarsi di notte, ma presto lo scoprirete da soli.

Osservate così il moto del Sole durante il giorno da casa vostra, individuando il punto dove sorge al mattino e dove tramonta la sera. Non serve una determinazione precisa, basta solo localizzare l’area di cielo relativa ad alba e tramonto.

A questo punto avete già imparato un concetto astronomico importante: la regione di cielo dove sorge il Sole è l’est. La regione di cielo dove tramonta il Sole è l’ovest. Avrete sicuramente notato come est ed ovest si trovino in punti diametralmente opposti del cielo. A questo punto indicate con il braccio sinistro l’est e con il braccio destro l’ovest. La regione di cielo di fronte a voi è il sud. Alle vostre spalle non vi rimane che il nord. Osservando il moto diurno del Sole sarete così riusciti ad individuare i quattro punti cardinali.

Scegliamo ora una serata di cielo sereno nel periodo dell’anno compreso tra Marzo e Giugno e puntiamo il nostro sguardo verso nord. Dovremmo individuare sette stelle molto luminose, alte sull’orizzonte (praticamente sopra la nostra testa nel mese di Maggio), la cui disposizione oltre ai nomi delle singole stelle è riportata in Figura 1.

Figura 1: la costellazione dell'Orsa Maggiore (immagine ottenuta con il programma Stellarium)

Tale agglomerato di stelle, d’ora in poi parleremo di costellazione, è noto come Orsa Maggiore. A questo punto tracciamo una linea immaginaria tra le stelle Merak e Dubhe. Muoviamoci così lungo questa linea nella direzione indicata dalle stelle Alioth, Mizar e Alkaid. La prima stella luminosa che troveremo è la stella Polare.

Se sino a questo punto avete fatto tutto correttamente, la stella polare dovrebbe trovarsi esattamente nella regione di cielo che voi avete identificato come nord.

Questa stella è molto importante perché, mentre la costellazione dell’Orsa Maggiore si muoverà notte dopo notte e nel corso stesso della notte, la Polare non si sposta mai.

Primo passo da fare per navigare tra le stelle è quella di cercare la stella Polare. Per fare questo dovrete innanzitutto cercare nel cielo l’Orsa Maggiore che si trova alta nel cielo solo nei mesi compresi tra Marzo e Giugno. Trovata la stella polare, indicatela con il braccio destro. Il braccio sinistro indicherà così il sud, di fronte a voi avrete l’ovest e alle vostre spalle l’est. Individuata la stella Polare siete così in grado di riconoscere i quattro punti cardinali senza dover osservare il moto del Sole per un’intera giornata.

Perché non usare una bussola? Il motivo principale è che utilizzando la stella Polare cominciate ad avere un contatto con il cielo ed a stimare le dimensioni di una costellazioni (alcuni confondono le Pleiadi con la costellazione dell’Orsa Minore). Inoltre gran parte delle bussole economiche non segnano mai il nord.

Come procedere ora? A questo punto dovrete prendere una mappa del cielo o utilizzare software gratuiti come Stellarium. Posizionate il punto cardinale della mappa o della simulazione virtuale in modo che sia di fronte a voi. Alzate gli occhi al cielo e cercate di individuare le costellazioni presenti utilizzando come metro la costellazione dell’Orsa Maggiore. Ovviamente dai cieli di casa vostra non riuscirete mai a vedere tutte le stelle riportate nelle mappe astronomiche. Cominciate con le costellazioni più appariscenti che nei mesi compresi tra Marzo e Giugno sono: Leone, Gemelli, Boote e la Lira. Di queste dovreste individuare quasi tutte le stelle principali. Dopodiché provate a trovare tutte le altre costellazioni che potrebbero però apparire prive di qualche stella nascosta tra le luci dell’inquinamento luminoso.

Divertitevi quindi cercando, notte dopo notte, di ricostruire la mappa del cielo visibile da casa vostra. Se vi imbattete in qualche stella molto luminosa che però non appare nelle vostre mappe astronomiche non vi preoccupate: è un pianeta. Avete così quattro mesi per imparare ad individuare le costellazioni dopodiché l’Orsa Maggiore non sarà più visibile e dovrete quindi utilizzare le costellazioni studiate in questo periodo per ritrovare il nord e la stella Polare.

Quando vi sentirete pronti a fare il grande balzo prendete l’automobile e andate lontano dalle città sotto un cielo buio. In queste condizioni le costellazioni appariranno ben visibili in cielo in tutte le loro parti e la prima impressione sarà quella di un completo smarrimento. Le prime volte non riuscirete persino a ritrovare la costellazione dell’Orsa Maggiore, persa tra migliaia di stelle.

Siete ormai pronti per navigare in mare aperto. Buon viaggio!

Social Widgets powered by AB-WebLog.com.