13.75 miliardi di anni fa, tutto lo spazio che oggi possiamo “osservare” con i nostri telescopi aveva dimensioni infinitesime, ben più piccole di un atomo. In questo microcosmo era concentrata tutta la materia (energia) che oggi ritroviamo nell’Universo sotto forma di pianeti, stelle e galassie.

Non ha senso quindi parlare di cosa ci fosse prima od oltre l’Universo dato che il tempo e lo spazio nacquero proprio in quell’istante, noto come Big Bang.

In realtà Big Bang è una parola fuorviante, dato che 13.75 miliardi di anni fa NON esplose proprio nulla. Semplicemente lo spazio (tempo) iniziò a dilatarsi; un processo tuttora in atto.

Molta materia in poco spazio si traduce in urti violenti e quindi altissime temperature. Sono proprio questi urti che nei primi istanti dopo il Big Bang hanno dato luogo alla produzione di tutte le particelle elementari che oggi vengono ricreate, dopo quasi 14 miliardi di anni, nei grandi acceleratori quali, ad esempio, LHC al CERN di Ginevra.

Dopo un minuto dal Big Bang la temperatura ha cominciato ad abbassarsi permettendo la fusione nucleare tra le particelle sopravvissute alle prime fasi turbolenti di vita dell’Universo: protoni e neutroni. In circa 20 minuti vennero sintetizzati i primi elementi chimici presenti nel cosmo: Idrogeno, Elio, Litio e Berillio. Dopo 20 minuti l’espansione fece si che gli spazi divennero sufficientemente grandi da abbassare la temperatura dell’Universo fino alla soglia necessaria per innescare la fusione nucleare. La grande fornace cosmica così si fermò e per 400 mila anni l’Universo cominciò a brillare di luce come un Ferro rovente appena uscito da un forno, senza però produrre nessun nuovo elemento chimico.

Questa fase di “Universo luminoso” finì dopo 379 mila anni quando lo spazio, sempre più grande, permise agli elettroni di legarsi ai nuclei sintetizzati nei primi 20 minuti di vita dell’Universo. Si passa così dal plasma all’atomo: il cosmo cade nell’oscurità; un’oscurità che durerà circa 400 milioni di anni, periodo in cui l’Universo rimase uno spazio buio, senza stelle, riempito da immense nube di Idrogeno ed Elio.

M42 - Nebulosa di Orione

Per motivi ancora non del tutto chiari, queste nubi ad un certo punto cominciarono ad addensarsi, così come fanno le nuvole in un cielo sereno. Al loro interno si formarono delle piccole “gocce”, ovvero dei punti dove i gas cominciarono ad addensarsi maggiormente. Compressi dalla forza di gravità, in poco tempo i gas si portarono a temperature di qualche milione di gradi innescando nuovamente la fusione nucleare. Dopo 400 milioni di anni, al centro di quegli ammassi condensati, l’Universo ricominciò a sintetizzare gli elementi chimici.

Il processo di fusione nucleare libera energia sotto forma di radiazione la quale, passando attraverso il gas compresso dalla gravità, diviene luce. Il gas così si “accende” mantenendosi in un fragile equilibrio: nascono le stelle.

Oggi possiamo vedere in diretta il processo di formazione stellare osservando in dettaglio il centro della nebulosa di Orione (M42) come mostrato recentemente dall’Hubble Space Telescope. Un processo iniziato circa 13 miliardi di anni fa e tuttora in atto.

Una volta nate, le stelle continueranno nel loro centro a dar luogo alla fusione sintetizzando, passo dopo passo, tutti gli elementi chimici presenti nella tavola periodica fino al Ferro.

Tutte le stelle che osserviamo nel cielo si trovano in questo stato. Una volta giunte alla fine della loro vita (ovvero sintetizzato l’elemento più pesante permesso), queste possono o spegnersi dolcemente rilasciando nello spazio il gas che le costituisce oppure esplodere violentemente dando luogo a quei fenomeni noti come esplosioni di supernova. Nel primo caso, l’oggetto che possiamo osservare con i nostri telescopi è un ammasso di gas sferico con al centro quel che rimane del nucleo stellare (nana bianca). Questo tipo di nebulosa è detta nebulosa planetaria.

M27 - Esempio di nebulosa planetaria

L’aggettivo “planetario” è fuorviante, dato che queste nebulose non hanno nulla a che fare con i pianeti. L’origine del nome è da ricercarsi nella difficoltà che i primi astronomi trovarono nel risolvere questi oggetti che apparivano, ai loro telescopi, come dei dischi luminosi immersi nell’oscurità del cielo; dischi del tutto simili a quelli planetari.

Le esplosioni di supernova generano invece nebulose più irregolari. Gran parte delle nebulose ad emissione e oscure hanno avuto origine da un’esplosione di supernova. La stessa nebulosa granchio o M1, nella costellazione del Toro, è il resto di una stella esplosa nel 1054.

Durante un’esplosione di supernova vengono rilasciati nello spazio interstellare tutti gli elementi sintetizzati all’interno della stella e quindi tutti gli elementi chimici dall’Idrogeno al Ferro. Gli altri elementi pesanti, come ad esempio l’Uranio, verranno invece prodotti durante l’esplosione stessa.

Questo gas “sporco” va così a contaminare l’Universo. Stelle che nasceranno dalla contrazione di questo gas partiranno con degli elementi pesanti al loro interno oltre ai sempre abbondanti Idrogeno ed Elio. Tali stelle prendono il nome di stelle di “seconda” generazione. Una stella di questo tipo è ad esempio il nostro Sole. Nel Sole infatti troviamo tracce di elementi pesanti, tra cui il Ferro, necessariamente sintetizzati in passato nel cuore di una stella (più massiva) poi esplosa.

M33 - Esempio di galassia a spirale


Tornando alla storia dell’Universo abbiamo visto come, dopo 400 milioni di anni, all’interno di enormi nubi di gas hanno cominciato ad accendersi le prime stelle. L’insieme di tutte le stelle di una “nube primordiale” è detto galassia. All’interno di ciascuna galassia le stelle possono poi nascere in piccoli aggruppamenti noti come ammassi aperti. Un esempio di ammasso aperto sono le Pleiadi o M45 nella costellazione del Toro, nate da un’unica nebulosa circa 100 milioni di anni fa.

Tra le tante “nubi primordiali” una ha cominciato a originare le prime stelle circa 1 miliardo di anni dopo il Big Bang: si tratta della Via Lattea, la galassia di cui il Sole è una delle 300 miliardi di stelle che oggi la compongono. Se guardate il cielo estivo (ma anche autunnale o invernale) vi accorgerete che questo è attraversato da una grande striscia bianca: la Via Lattea appunto. Se la ingrandite con un binocolo vi accorgerete che questa è composta da tantissime stelle.

La Via Lattea non è nient’altro che una galassia “vista dall’interno”.

M13 – Esempio di ammasso globulare

Intorno alle galassie abbiamo spesso anche la condensazione contemporanea di altre piccole nube di gas che danno luogo a quegli ammassi noti come ammassi globulari.

M45 - ammasso aperto delle Pleiadi

Malgrado è usanza parlare in generale di ammassi stellari, bisogna notare che mentre quelli aperti si trovano dentro le galassie quelli globulari sono di natura extra-galattica. Esempio di ammasso globulare è il grande ammasso dell’Ercole o M13 nella costellazione omonima.

Ma quante sono le galassie nell’Universo? Ad oggi conosciamo qualcosa come 100 miliardi di galassie che si muovono nello spazio (sempre più grande a seguito dell’espansione) obbedendo praticamente alla sola forza di gravità. Questa a volte spinge le galassie le une contro le altre dando luogo a veri e propri scontri galattici.

Per comprendere le distanze e le dimensioni di tutti questi oggetti cosmici che abbiamo fin qui descritto ne riportiamo alcuni esempi.

  • Diametro della Terra: 12’700 km
  • Diametro della Luna: 3’500 km
  • Diametro del Sole: 1’400’000 km
  • Dimensione delle stelle più grandi: 1’960’000’000 km
  • Distanza Sole – Plutone: 7’300’000’000 km
  • Distanza Sole – Proxima Centauri (stella più vicina): 39’700’000’000’000 km = 4.2 ly (anni luce)
  • Distanza Sole – M42: 1’344 ly
  • Diametro Via Lattea: 100’000 ly
  • Distanza Sole – M13: 22’000 ly
  • Distanza Sole – Galassia di Andromeda (galassia più vicina): 2’540’000 ly
  • Distanza Sole – galassia più distante: 13’200’000’000 ly

Vediamo ora cosa è successo 4.568 miliardi di anni fa, quando da una nebulosa della Via Lattea, nacque il Sole. Per 10 milioni di anni intorno al Sole è stata presente una nube di gas e polveri che piano piano hanno cominciato a condensare formando corpi minori molto simili a piccoli asteroidi. Questi hanno cominciato a collidere gli uni contro gli altri per 100 milioni di anni, formando a mano a mano corpi di dimensioni sempre maggiori. Al termine di questo processo vennero a costituirsi otto pianeti: Mercurio, Venere, Terra, Marte, Giove, Saturno, Urano e Nettuno.

Il pianeta Giove

Quelli più esterni riuscirono inoltre a raccogliere intorno a se il gas presente, andando ad aumentare sempre più il loro volume. Oggi Giove, Saturno, Urano e Nettuno sono infatti dotati di atmosfere molto estese tanto da dare loro il nome di pianeti gassosi.

Ancor oggi è rimasto qualcosa di quell’insieme di piccoli corpuscoli primordiali: sono gli Asteroidi e i corpi minori della fascia di Kuiper e della nube di Oort.

Dal 24 Agosto 2006 esiste infine una nuova classificazione dei corpi celesti del Sistema Solare. In particolare esistono corpi che sono dei “pianeti” mancati, ovvero oggetti troppo piccoli per essere chiamati pianeti ma troppo grandi e regolari per essere chiamati asteroidi o corpi minori. Tali pianeti mancati prendono il nome di pianeti nani. Ad oggi (2012) i pianeti nani del Sistema Solare sono cinque: Cerere, Plutone, Eris, Makemake e Haumea. Plutone che prima del 2006 era catalogato come pianeta è quindi stato “declassato” al titolo di pianeta nano.

Nella lontana nube di Oort si trovano invece le comete. Ovvero corpuscoli primordiali delle dimensioni variabili da 100 m a diverse decine di chilometri, costituiti prevalentemente da ghiaccio. Questi oggetti, perturbati dalle loro orbite possono cadere verso il Sole. In prossimità della nostra stella il ghiaccio comincia a sublimare lasciando dietro al corpo la nota coda. Sono le comete, che in modo più o meno prevedibile attraversano i nostri cieli notturni. La zona luminosa, costituita dal corpo in sublimazione, è nota come chioma.

La cometa Garradd

Il Sistema Solare è l’unico sistema planetario della Via Lattea? Se si ipotizza che il Sole è una delle tante stelle che costituiscono la nostra galassia, allora è ovvio che il Sistema Solare è solo uno dei tanti. Fino a pochi anni fa questa era però solo una speculazione filosofica. Oggi, grazie alle più recenti tecniche astronomiche è stato possibile “vedere” per la prima volta pianeti che ruotano intorno ad altre stelle. Ad oggi sono stati osservati più di 1000 pianeti detti esopianeti, di cui 8 di dimensioni (e posizioni) simili alla Terra ed altri 8 leggermente più grandi. Se questo fosse generalizzabile a tutta la Via Lattea, avremmo ben 48’000’000 di pianeti simili alla Terra solo nella nostra galassia!

In questo post sono stati riportati solo i concetti base utili al neofita per un’osservazione consapevole dell’Universo attraverso il proprio telescopio. Informazioni più dettagliate le trovate in rete o tra poco anche su ASTROtrezzi.it, sezione ASTROnomia. Non vi resta che augurarvi una buona osservazione e cieli sereni!

Download PDF scarica in formato PDF

1 commento

Corso di Astronomia alla Riserva Lago di Piano : ASTROtrezzi.it · Novembre 19, 2012 alle 10:27 am

[…] DISPENSA DELLA CONFERENZA […]

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

Social Widgets powered by AB-WebLog.com.